A336680 Exponential admirable numbers: numbers k such that there is a proper exponential divisor d of k such that esigma(k) - 2*d = 2*k, where esigma is the sum of exponential divisors function (A051377).
900, 1764, 4356, 4500, 4900, 6084, 6300, 7056, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 40572, 42300, 42588, 47700
Offset: 1
Keywords
Examples
900 is a term since 900 = 30 + 60 + 90 + 150 - 180 + 300 + 450 is the sum of its proper exponential divisors with one of them, 180, taken with a minus sign.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[50000], expAdmQ]
Comments