cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336680 Exponential admirable numbers: numbers k such that there is a proper exponential divisor d of k such that esigma(k) - 2*d = 2*k, where esigma is the sum of exponential divisors function (A051377).

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 7056, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 40572, 42300, 42588, 47700
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper exponential divisors, with one of them taken with a minus sign.

Examples

			900 is a term since 900 = 30 + 60 + 90 + 150 - 180 + 300 + 450 is the sum of its proper exponential divisors with one of them, 180, taken with a minus sign.
		

Crossrefs

The exponential version of A111592.
Subsequence of A129575.
Similar sequences: A328328, A334972, A334974.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[50000], expAdmQ]