This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336683 #10 Oct 05 2020 18:00:01 %S A336683 1,3,7,15,31,63,127,175,511,1023,1327,4031,7471,16383,32767,43951, %T A336683 127807,238895,502063,1048575,1319215,2719023,7798639,10692015, %U A336683 33554431,61209903,134217727,259173375,337649967,1073741823,1571892655,2880154543,5417565487,15638470959 %N A336683 Sum of 2^k for all residues k found in the Fibonacci sequence mod n. %C A336683 Row n of A079002 compactified as a binary number. %H A336683 Michael De Vlieger, <a href="/A336683/b336683.txt">Table of n, a(n) for n = 1..3322</a> %H A336683 Michael De Vlieger, <a href="/A336683/a336683.png">Plot of bits of a(n)</a> beginning with 2^0 at left for 1 <= n <= 5000. %F A336683 a(n) = Sum(2^k) for all k in row n of A189768. %F A336683 a(n) = 2^(n+1) - 1 for n in A079002. %e A336683 a(1) = 1 by convention. %e A336683 a(2) = 3 = 2^0 + 2^1, since the Fibonacci sequence mod 2 is {0,1,1} repeated, and 0 and 1 appear in the sequence. %e A336683 a(8) = 175 = 2^0 + 2^1 + 2^2 + 2^3 + 2^5 + 2^7, since the Fibonacci sequence mod 8 is {0,1,1,2,3,5,0,5,5,2,7,1} repeated, and we are missing 4 and 6, leaving the exponents of 2 as shown. %e A336683 Binary equivalents of first terms: %e A336683 n a(n) a(n) in binary %e A336683 -------------------------- %e A336683 1 1 1 %e A336683 2 3 11 %e A336683 3 7 111 %e A336683 4 15 1111 %e A336683 5 31 11111 %e A336683 6 63 111111 %e A336683 7 127 1111111 %e A336683 8 175 10101111 %e A336683 9 511 111111111 %e A336683 10 1023 1111111111 %e A336683 11 1327 10100101111 %e A336683 12 4031 111110111111 %e A336683 13 7471 1110100101111 %e A336683 14 16383 11111111111111 %e A336683 15 32767 111111111111111 %e A336683 16 43951 1010101110101111 %e A336683 ... %t A336683 {1}~Join~Array[Block[{w = {0, 1}}, Do[If[SequenceCount[w, {0, 1}] == 1, AppendTo[w, Mod[Total@ w[[-2 ;; -1]], #]], Break[]], {i, 2, Infinity}]; Total[2^Union@ w]] &, 33, 2] %t A336683 (* Second program: generate the first n terms using the plot in Links *) %t A336683 With[{n = 34, img = ImageData@ ColorNegate@ Import["https://oeis.org/A336683/a336683.png"]}, Map[FromDigits[#, 2] &@ Drop[#, LengthWhile[#, # == 0 &]] &@ Reverse[IntegerPart[#]] &, img[[1 ;; n]]]] (* _Michael De Vlieger_, Oct 05 2020 *) %Y A336683 Cf. A000045, A001175, A066853, A079002, A128924, A189768. %K A336683 nonn,easy %O A336683 1,2 %A A336683 _Michael De Vlieger_, Oct 04 2020