This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336685 #5 Feb 21 2021 10:56:26 %S A336685 1,3,7,15,30,63,127,190,511,990,1183,3582,8190,16383,18590,47806, %T A336685 131070,247967,298911,854686,1453502,2423967,8362495,10366142, %U A336685 31738014,67100670,134217727,262073758,302254239,609175710,1779923167,3133061822,4962151582,16855148990 %N A336685 Sum of 2^k for residue k in among Lucas numbers mod n. %C A336685 Row n of A336684 compactified as a binary number. %C A336685 a(n) contains even numbers whereas A336683 (pertaining to the Fibonacci sequence) is strictly odd, since 0 is a Fibonacci number but not a Lucas number. %F A336685 a(3^j) = 2^(3^j+1) - 1 for all j. %F A336685 A066981(n) = binary weight of a(n). %F A336685 A223487(n) = n - A066981(n) = number of zeros in the binary expansion of a(n). %F A336685 a(m) = 2^(m+1) - 1 for m = A224482(n). %e A336685 a(1) = 1 by convention. %e A336685 a(2) = 3 = 2^0 + 2^1, since the Lucas sequence contains both even and odd numbers. %e A336685 a(5) = 30 = 2^1 + 2^2 + 2^3 + 2^4, since the Lucas numbers mod 5 is {2,1,3,4,2,1} repeated, and we are missing 0, leaving the exponents of 2 as shown. %e A336685 Binary equivalents of first terms: %e A336685 n a(n) a(n) in binary %e A336685 -------------------------- %e A336685 1 1 1 %e A336685 2 3 11 %e A336685 3 7 111 %e A336685 4 15 1111 %e A336685 5 30 11110 %e A336685 6 63 111111 %e A336685 7 127 1111111 %e A336685 8 190 10111110 %e A336685 9 511 111111111 %e A336685 10 990 1111011110 %e A336685 11 1183 10010011111 %e A336685 12 3582 110111111110 %e A336685 13 8190 1111111111110 %e A336685 14 16383 11111111111111 %e A336685 15 18590 100100010011110 %e A336685 16 47806 1011101010111110 %e A336685 ... %t A336685 Total /@ {Most@ #, #} &[2^Range[0, 1]]~Join~Array[Block[{w = {2, 1}}, Do[If[SequenceCount[w, {2, 1}] == 1, AppendTo[w, Mod[Total@ w[[-2 ;; -1]], #]], Break[]], {i, 2, Infinity}]; Total[2^Union@ w]] &, 32, 3] %Y A336685 Cf. A000032, A066981, A106291, A223487, A336684. Analogous to A336683. %K A336685 nonn,easy %O A336685 1,2 %A A336685 _Michael De Vlieger_, Oct 07 2020