This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336725 #19 Dec 03 2020 11:49:58 %S A336725 1,2,2,3,5,3,4,10,8,4,5,19,17,10,5,6,36,34,24,13,6,7,69,67,49,29,17,7, %T A336725 8,134,132,98,64,36,18,8,9,263,261,195,129,84,43,20,9,10,520,518,388, %U A336725 258,160,99,55,25,10,11,1033,1031,773,515,321,247,114,62,26,11,12,2058,2056,1542,1028,642,384,278,129,66,29,12 %N A336725 A(n,k) is the n-th number that is a sum of k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals. %H A336725 Alois P. Heinz, <a href="/A336725/b336725.txt">Antidiagonals n = 1..141, flattened</a> %e A336725 Square array A(n,k) begins: %e A336725 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... %e A336725 2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, ... %e A336725 3, 8, 17, 34, 67, 132, 261, 518, 1031, 2056, ... %e A336725 4, 10, 24, 49, 98, 195, 388, 773, 1542, 3079, ... %e A336725 5, 13, 29, 64, 129, 258, 515, 1028, 2053, 4102, ... %e A336725 6, 17, 36, 84, 160, 321, 642, 1283, 2564, 5125, ... %e A336725 7, 18, 43, 99, 247, 384, 769, 1538, 3075, 6148, ... %e A336725 8, 20, 55, 114, 278, 734, 896, 1793, 3586, 7171, ... %e A336725 9, 25, 62, 129, 309, 797, 2193, 2048, 4097, 8194, ... %e A336725 10, 26, 66, 164, 340, 860, 2320, 6568, 4608, 9217, ... %p A336725 A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end, %p A336725 proc(n, k) option remember; local b; b:= %p A336725 proc(x, y) option remember; `if`(x=0, {0}, `if`(y<1, {}, %p A336725 {b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})) %p A336725 end; %p A336725 while nops(w(k)) < n do forget(b); %p A336725 l(k):= [l(k)[], (nops(l(k))+1)^k]; %p A336725 w(k):= sort([select(h-> h<l(k)[-1], b(k, nops(l(k))))[]]) %p A336725 od; w(k)[n] %p A336725 end; A %p A336725 end(): %p A336725 seq(seq(A(n, 1+d-n), n=1..d), d=1..12); %t A336725 nmax = 12; %t A336725 pow[n_, k_] := IntegerPartitions[n, {k}, Range[n^(1/k) // Ceiling]^k]; %t A336725 col[k_] := col[k] = Reap[Module[{j = k, n = 1, p}, While[n <= nmax, p = pow[j, k]; If[p =!= {}, Sow[j]; n++]; j++]]][[2, 1]]; %t A336725 A[n_, k_] := col[k][[n]]; %t A336725 Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Dec 03 2020 *) %Y A336725 Columns k=1-11 give: A000027, A000404, A003072, A003338, A003350, A003362, A003374, A003386, A003398, A004810, A004822. %Y A336725 Rows n=1-3 give: A000027, A052944, A145071. %Y A336725 Main diagonal gives A000337. %Y A336725 Cf. A336820. %K A336725 nonn,tabl %O A336725 1,2 %A A336725 _Alois P. Heinz_, Aug 01 2020