This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336728 #20 Aug 03 2020 08:52:33 %S A336728 1,1,-1,1,9,-174,2575,-38219,588833,-9274418,141253551,-1739881142, %T A336728 -753419447,1379742127908,-83720072007585,4059017293956301, %U A336728 -184613801568558975,8254420480122200214,-369177108304219471457,16608406418618863804990,-750673988803431836351799 %N A336728 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-n)^(n-k) * binomial(n,k) * binomial(n,k-1) for n > 0. %H A336728 Seiichi Manyama, <a href="/A336728/b336728.txt">Table of n, a(n) for n = 0..387</a> %F A336728 a(n) = Sum_{k=0..n} (-n)^k * (n+1)^(n-k) * binomial(n,k) * binomial(n+k,n)/(k+1). %t A336728 a[0] = 1; a[n_] := Sum[(-n)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 21, 0] (* _Amiram Eldar_, Aug 02 2020 *) %o A336728 (PARI) {a(n) = if(n==0, 1, sum(k=1, n, (-n)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)} %o A336728 (PARI) {a(n) = sum(k=0, n, (-n)^k*(n+1)^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))} %Y A336728 Main diagonal of A336727. %Y A336728 Cf. A242369, A307885, A336713, A336714. %K A336728 sign %O A336728 0,5 %A A336728 _Seiichi Manyama_, Aug 02 2020