This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336732 #16 Aug 02 2020 09:46:21 %S A336732 0,1,26,282,2072,12279,63858,305464,1382648,6029325,25628762, %T A336732 107026662,441439944,1804904755,7334032754,29669499492,119647095176, %U A336732 481400350185,1933747745850,7758556171570,31102292517560,124605486285231,498987240470066,1997573938402512 %N A336732 The number of tight 4 X n pavings. %C A336732 This is row (or column) m=4 of the array T in A285357. %H A336732 D. E. Knuth (Proposer), <a href="http://dx.doi.org/10.4169/amer.math.monthly.124.8.754">Problem 12005</a>, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 755. For the <a href="https://doi.org/10.1080/00029890.2019.1621132">solution</a> see op. cit., 126 (No. 7, 2019), 660-664. %H A336732 Roberto Tauraso, <a href="http://www.mat.uniroma2.it/~tauraso/AMM/AMM12005.pdf">Problem 12005, Proposed solution</a>. %H A336732 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (18,-139,604,-1627,2818,-3141,2176,-852,144). %F A336732 a(n) = (4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36. %F A336732 G.f.: (x+8*x^2-47*x^3+6*x^4+104*x^5)/((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)). %p A336732 seq((4^(n+5)+(n-42)*3^(n+4)-9*(2*n-27)*2^(n+5)-36*n^3-486*n^2-2577*n-5398)/36,n=0..20); %t A336732 num=(x+8*x^2-47*x^3+6*x^4+104*x^5); den=((1-x)^4*(1-2*x)^2*(1-3*x)^2*(1-4*x)); CoefficientList[Series[num/den,{x,0,20}],x] %Y A336732 Cf. A000295 (m=2), A285357, A285361 (m=3), A336734 (m=5). %K A336732 nonn,easy %O A336732 0,3 %A A336732 _Roberto Tauraso_, Aug 02 2020