This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336735 #7 Aug 06 2020 09:27:55 %S A336735 1,2,4,6,8,10,12,14,15,16,18,20,22,24,26,28,30,32,33,34,35,36,38,40, %T A336735 44,45,46,48,50,51,52,54,55,56,58,60,62,64,66,68,69,70,72,74,75,76,77, %U A336735 80,82,84,85,86,88,90,92,93,94,95,96,98,99,100,102,104,106 %N A336735 Products of elements of A304711. %C A336735 A304711 lists numbers whose distinct prime indices are pairwise coprime. %C A336735 First differs from A304711 in having 84. %H A336735 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A336735 The sequence of terms together with their prime indices begins: %e A336735 1: {} 28: {1,1,4} 52: {1,1,6} %e A336735 2: {1} 30: {1,2,3} 54: {1,2,2,2} %e A336735 4: {1,1} 32: {1,1,1,1,1} 55: {3,5} %e A336735 6: {1,2} 33: {2,5} 56: {1,1,1,4} %e A336735 8: {1,1,1} 34: {1,7} 58: {1,10} %e A336735 10: {1,3} 35: {3,4} 60: {1,1,2,3} %e A336735 12: {1,1,2} 36: {1,1,2,2} 62: {1,11} %e A336735 14: {1,4} 38: {1,8} 64: {1,1,1,1,1,1} %e A336735 15: {2,3} 40: {1,1,1,3} 66: {1,2,5} %e A336735 16: {1,1,1,1} 44: {1,1,5} 68: {1,1,7} %e A336735 18: {1,2,2} 45: {2,2,3} 69: {2,9} %e A336735 20: {1,1,3} 46: {1,9} 70: {1,3,4} %e A336735 22: {1,5} 48: {1,1,1,1,2} 72: {1,1,1,2,2} %e A336735 24: {1,1,1,2} 50: {1,3,3} 74: {1,12} %e A336735 26: {1,6} 51: {2,7} 75: {2,3,3} %t A336735 nn=100; %t A336735 dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]; %t A336735 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A336735 Select[Range[nn],facsusing[dat,#]!={}&] %Y A336735 A181818 is the version for superprimorials, with complement A336426. %Y A336735 A336496 is the version for superfactorials, with complement A336497. %Y A336735 A336620 is the complement. %Y A336735 A000837 counts relatively prime partitions, with strict case A007360. %Y A336735 A001055 counts factorizations. %Y A336735 A302696 lists numbers with coprime prime indices. %Y A336735 A304711 lists numbers with coprime distinct prime indices. %Y A336735 Cf. A001221, A007360, A007916, A056239, A112798, A302569, A327516, A333228, A335238, A335239, A335240, A336424, A336497, A336736. %K A336735 nonn %O A336735 1,2 %A A336735 _Gus Wiseman_, Aug 02 2020