This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336736 #8 Aug 06 2020 23:28:59 %S A336736 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1,1, %T A336736 1,4,1,1,1,3,1,1,1,2,2,1,1,4,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,1,1,2, %U A336736 1,1,1,5,1,1,2,2,1,1,1,4,5,1,1,2,1,1,1 %N A336736 Number of factorizations of n whose distinct factors have disjoint prime signatures. %C A336736 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization. %e A336736 The a(n) factorizations for n = 36, 360, 720, 192, 288: %e A336736 (36) (360) (720) (192) (288) %e A336736 (6*6) (5*72) (8*90) (3*64) (8*36) %e A336736 (2*2*9) (8*45) (9*80) (4*48) (9*32) %e A336736 (3*3*4) (9*40) (10*72) (6*32) (16*18) %e A336736 (10*36) (16*45) (12*16) (2*144) %e A336736 (5*8*9) (5*144) (3*8*8) (6*6*8) %e A336736 (5*9*16) (4*6*8) (2*2*72) %e A336736 (8*9*10) (3*4*16) (2*9*16) %e A336736 (3*4*4*4) (3*3*32) %e A336736 (2*2*8*9) %e A336736 (3*3*4*8) %e A336736 (2*2*2*36) %e A336736 (2*2*2*2*2*9) %t A336736 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A336736 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A336736 prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; %t A336736 Table[Length[Select[facs[n],stableQ[#,Intersection[prisig[#1],prisig[#2]]!={}&]&]],{n,100}] %Y A336736 A001055 counts factorizations. %Y A336736 A118914 is sorted prime signature. %Y A336736 A124010 is prime signature. %Y A336736 A336737 counts factorizations with intersecting signatures. %Y A336736 Cf. A000372, A003182, A006126, A109298, A112798, A293606, A294068, A305844, A321469, A336424. %K A336736 nonn %O A336736 1,4 %A A336736 _Gus Wiseman_, Aug 06 2020