This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336738 #18 Jan 27 2021 11:39:19 %S A336738 1399,17939,32869,149759,282349,458929,388099,615389,634169,585619, %T A336738 926179,1053449,1876339,1336529,2056829,2156369,2695249,2653699, %U A336738 2819779,2501449,1461709,2176679,3457969,2549479,3433819,5299219,4845499,4774619,7874749,8796049,9139469,9029399,7075759,5156299 %N A336738 Primes abs(A335592(k))/2 for k in A335593. %C A336738 All terms end in 9 (or 1, if there are any with A335592(k) < 0). %H A336738 Robert Israel, <a href="/A336738/b336738.txt">Table of n, a(n) for n = 1..10000</a> %F A336738 a(n) = abs(A335592(A335593(n)))/2. %e A336738 A335593(3) = 27, A335592(27) = det(631, 563; 577, 619) = 65738 = 2*32869 %e A336738 so a(3) = 32869. %p A336738 count:= 0: R:= NULL: %p A336738 L:= [-9, -7, -3, -1]: %p A336738 for k from 1 while count < 100 do %p A336738 for i from 1 to 4 do %p A336738 for x from L[i]+10 by 10 do until isprime(x); %p A336738 L[i]:= x; %p A336738 od; %p A336738 v:= L[1]*L[4]-L[2]*L[3]; %p A336738 if isprime(abs(v)/2) then count:= count+1; R:= R, abs(v)/2; fi %p A336738 od: %p A336738 R; %Y A336738 Cf. A335592, A335593. %K A336738 nonn,base,look %O A336738 1,1 %A A336738 _J. M. Bergot_ and _Robert Israel_, Jan 27 2021