cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336741 Decimal expansion of Sum_{n>=2} 1/log(n)^sqrt(n).

This page as a plain text file.
%I A336741 #12 Aug 06 2020 04:10:14
%S A336741 4,3,7,2,4,5,0,0,2,1,1,0,6,6,2,9,6,6,4,5,5,0,8,2,7,9,8,9,7,5,5,5,5,3,
%T A336741 7,9,0,4,1,0,0,6,7,5,5,3,1,9,7,0,6,5,5,7,3,0,7,5,7,4,9,2,5,0,6,6,0,1,
%U A336741 8,8,2,7,3,4,5,4,1,7,1,0,1,1,2,5,2,5,1
%N A336741 Decimal expansion of Sum_{n>=2} 1/log(n)^sqrt(n).
%C A336741 The series u(n) = 1/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.
%D A336741 J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.d p. 247.
%F A336741 Equals Sum_{n>=2} 1/log(n)^sqrt(n).
%e A336741 4.372450021106629664550827989755553790410067553197...
%p A336741 evalf(sum(1/(log(n)^sqrt(n), n=2..infinity), 120);
%o A336741 (PARI) sumpos(n=2, 1/log(n)^sqrt(n)) \\ _Michel Marcus_, Aug 03 2020
%Y A336741 Cf. A099870, A099871, A308915.
%K A336741 nonn,cons
%O A336741 1,1
%A A336741 _Bernard Schott_, Aug 02 2020
%E A336741 More terms from _Jinyuan Wang_, Aug 03 2020