cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336746 Triangle read by rows: T(n,k) = (n-k-1+H(k+1))*((k+1)!) for 0 <= k <= n where H(k+1) = Sum_{i=0..k} 1/(i+1) for k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 3, 5, 11, 26, 4, 7, 17, 50, 154, 5, 9, 23, 74, 274, 1044, 6, 11, 29, 98, 394, 1764, 8028, 7, 13, 35, 122, 514, 2484, 13068, 69264, 8, 15, 41, 146, 634, 3204, 18108, 109584, 663696, 9, 17, 47, 170, 754, 3924, 23148, 149904, 1026576, 6999840
Offset: 0

Views

Author

Werner Schulte, Aug 02 2020

Keywords

Examples

			The triangle starts:
n\k :  0   1   2    3    4     5      6       7        8        9
=================================================================
  0 :  0
  1 :  1   1
  2 :  2   3   5
  3 :  3   5  11   26
  4 :  4   7  17   50  154
  5 :  5   9  23   74  274  1044
  6 :  6  11  29   98  394  1764   8028
  7 :  7  13  35  122  514  2484  13068   69264
  8 :  8  15  41  146  634  3204  18108  109584   663696
  9 :  9  17  47  170  754  3924  23148  149904  1026576  6999840
...
		

Crossrefs

Cf. A001477 (column 0), A005408 (column 1), A016969 (column 2), A001705 (main diagonal), A000254 (1st subdiagonal), A000774 (2nd subdiagonal).

Formula

T(n,k) = T(n,k-1) + k * T(n-1,k-1) for 0 < k <= n with initial values T(n,0) = n for n >= 0 and T(i,j) = 0 if j < 0 or j > i.
T(n,k) = k! + T(n-1,k-1) * (k+1) for 0 < k <= n.
T(n,k) = (k+1)! + T(n-1,k) for 0 <= k < n.
E.g.f. of main diagonal (case n=0) and n-th subdiagonal (n>0): Sum_{k>=0} T(n+k,k) * x^k / k! = (n - log(1-x)) / (1-x)^2 for n >= 0.
G.f. of column k>=0: Sum_{n>=k} T(n,k) * y^n = (T(k,k) * y^k + ((k+1)! - T(k,k)) * y^(k+1)) / (1-y)^2.
G.f.: Sum_{n>=0, k=0..n} T(n,k)*x^k*y^n/k! = (y - (1-y) * log(1-x*y)) / ((1-y)^2 * (1-x*y)^2).