cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336757 Number of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression with a perimeter = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 5, 0, 0, 2, 0, 0, 6, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 8, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 5, 0, 0, 11, 0, 0, 4
Offset: 1

Views

Author

Bernard Schott, Sep 20 2020

Keywords

Comments

Equivalently: number of primitive integer-sided triangles such that b = (a+c)/2 with a < c and perimeter = n.
As the perimeter of these triangles = 3*b where b is the middle side, a(n) >= 1 iff n = 3*b, with b >= 3.
When b is prime, all the triangles of perimeter n = 3*b are primitive, hence in this case: a(n) = A024164(n).
For the corresponding triples (primitive or not), miscellaneous properties and references, see A336750.

Examples

			a(9) = 1 for the smallest such triangle (2, 3, 4).
a(12) = 1 for the Pythagorean triple (3, 4, 5).
a(15) = 2 for the two triples (3, 5, 7) and (4, 5, 6).
a(18) = 1 for the triple (5, 6, 7); the other triple (4, 6, 8) corresponding to a perimeter = 18 is not a primitive triple.
		

Crossrefs

Cf. A336750 (triples, primitive or not), A336755 (primitive triples), A336756 (perimeters of primitive triangles).
Cf. A024164 (number of such triangles, primitive or not).
Similar sequences: A005044 (integer-sided triangles), A024155 (right triangles), A070201 (with integral inradius).

Formula

For n = 3*b, b >= 3, a(n) = A023022(b) = A000010(b)/2, otherwise a(n) = 0.