cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336769 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 2D square grid confined to an infinite strip of height h where the walk starts at the origin.

This page as a plain text file.
%I A336769 #26 Feb 01 2021 00:16:31
%S A336769 3,6,3,12,7,3,20,18,7,3,36,40,19,7,3,58,86,48,19,7,3,100,170,120,49,
%T A336769 19,7,3,160,350,274,130,49,19,7,3,268,688,620,326,131,49,19,7,3,430,
%U A336769 1394,1346,810,338,131,49,19,7,3,708,2702,2972,1912,884,339,131,49,19,7,3
%N A336769 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 2D square grid confined to an infinite strip of height h where the walk starts at the origin.
%F A336769 For n <= h, T(h,n) = A116903(n).
%F A336769 Row 1 = T(1,n) = A038577(n).
%F A336769 Row 2 = T(2,n) = A302408(n).
%e A336769 T(1,3) = 12. The six 3-step walks taking a first step to the right or a first step upward followed by a step to the right are:
%e A336769 .
%e A336769                   +  +--+     +--+  +--+--+  +--+
%e A336769                   |     |     |     |        |  |
%e A336769 +--+--+--+  +--+--+  +--+  +--+     +        +  +
%e A336769 .
%e A336769 The same steps can be taken to the left, giving a total of 2*6 = 12 walks.
%e A336769 .
%e A336769 The table begins:
%e A336769 .
%e A336769 3 6 12 20  36  58 100  160  268   430   708   1140   1860   3002    4876    7880...
%e A336769 3 7 18 40  86 170 350  688 1394  2702  5338  10278  20078  38578   74820  143496...
%e A336769 3 7 19 48 120 274 620 1346 2972  6402 13994  29870  64412 136308  291008  612920...
%e A336769 3 7 19 49 130 326 810 1912 4486 10262 23634  53642 122624 276524  627248 1405154...
%e A336769 3 7 19 49 131 338 884 2228 5560 13438 32320  76440 181202 425138 1001128 2336886...
%e A336769 3 7 19 49 131 339 898 2328 6050 15320 38478  94642 231798 560794 1357098 3258148...
%e A336769 3 7 19 49 131 339 899 2344 6180 16040 41572 105806 267560 666682 1655140 4070280...
%e A336769 3 7 19 49 131 339 899 2345 6198 16204 42586 110636 286682 733032 1865008 4693178...
%e A336769 3 7 19 49 131 339 899 2345 6199 16224 42788 112016 293908 764248 1982070 5089002...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42810 112260 295734 774682 2030988 5286652...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112284 296024 777042 2045610 5360672...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296050 777382 2048600 5380646...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777410 2048994 5384370...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049024 5384822...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049025 5384854...
%e A336769 3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049025 5384855...
%e A336769 ...
%Y A336769 Cf. A116903 (h->infinity), A038577 (h=1), A302408 (h=2), A001411, A038373.
%K A336769 nonn,walk,tabl
%O A336769 1,1
%A A336769 _Scott R. Shannon_, Aug 04 2020