This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336803 #34 Aug 27 2021 23:41:52 %S A336803 3,6,9,12,15,19,22,26,30,34,38,43,47,51,56,60,65,70,75,79,84,89,94,99, %T A336803 104,110,115,120,125,130,136,141,147,152,158,163,169,174,180,185,191, %U A336803 197,202,208,214,220,225,231,237,243,249,255,261,267,273,279,285,291 %N A336803 Numbers k such that A230319(k) - A230319(k-1) = 2. %C A336803 Sánchez Garza and Treviño proved the counting function for this sequence is asymptotic to x/log x. See link. %H A336803 M. Sánchez Garza and E. Treviño, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Trevino/trevino6.html">On a sequence related to the factoradic representation of an integer</a>, Journal of Integer Sequences Vol. 24 (2021), Article 21.8.5. %e A336803 3 is a term because A230319(3) - A230319(2) = 2. %t A336803 j[r_] := j[r] = Module[{k = 1}, While[k! <= k^(r - 1), k++]; k]; %t A336803 jPrimes = {}; Do[If[j[r + 1] - j[r] == 2, AppendTo[jPrimes, r], 0], {r, 1, 2500}] %o A336803 (PARI) f(n) = my(k=1); while (k^n >= k!, k++); k; \\ A230319 %o A336803 isok(n) = f(n) - f(n-1) == 2; \\ _Michel Marcus_, Jan 27 2021 %Y A336803 Cf. A230319. %K A336803 nonn %O A336803 1,1 %A A336803 _Enrique Treviño_, Jan 27 2021