cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336807 a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.

This page as a plain text file.
%I A336807 #8 Jan 27 2021 18:43:47
%S A336807 1,5,81,2917,186689,18668901,2688321745,526911062021,134889231877377,
%T A336807 43704111128270149,17481644451308059601,8461115914433100846885,
%U A336807 4873602766713466087805761,3294555470298303075356694437,2582931488713869611079648438609,2324638339842482649971683594748101
%N A336807 a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.
%F A336807 Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 4*x).
%F A336807 a(0) = 1; a(n) = 4 * n^2 * a(n-1) + 1.
%t A336807 Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
%t A336807 nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
%Y A336807 Cf. A006040, A056545, A336804, A336805, A336808.
%K A336807 nonn
%O A336807 0,2
%A A336807 _Ilya Gutkovskiy_, Jan 27 2021