cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336872 Table read by antidiagonals: T(b,n) is the number of n-step self avoiding walks on a 2D square grid confined inside a square box of dimension 2b X 2b where the walk starts at the middle of one of the box's edges.

Original entry on oeis.org

3, 5, 3, 10, 7, 3, 10, 17, 7, 3, 16, 39, 19, 7, 3, 10, 84, 47, 19, 7, 3, 14, 174, 119, 49, 19, 7, 3, 0, 336, 273, 129, 49, 19, 7, 3, 0, 634, 656, 325, 131, 49, 19, 7, 3, 0, 1072, 1500, 809, 337, 131, 49, 19, 7, 3, 0, 1856, 3496, 1979, 883, 339, 131, 49, 19, 7, 3
Offset: 1

Views

Author

Scott R. Shannon, Aug 06 2020

Keywords

Examples

			T(1,3) = 10. The five 3-step walks taking a first step to the right or upward steps followed by a step to the right are:
.
   +                    +   +--+
   |                    |   |
   +   +--+   +--+   +--+   +
   |      |   |  |   |      |
*--+   *--+   *  +   *      *
.
This walk can also take similar steps to the left, given a total of 5*2 = 10 walks.
.
The table begins:
.
3 5 10 10  16  10  14    0    0     0     0      0      0      0       0       0...
3 7 17 39  84 174 336  634 1072  1856  2888   4598   6526   9198   11504   13758...
3 7 19 47 119 273 656 1500 3496  7612 16762  34214  71932 140664  286522  540490...
3 7 19 49 129 325 809 1979 4816 11682 28250  67606 159380 370530  842432 1902126...
3 7 19 49 131 337 883 2227 5669 14017 35108  86440 215214 528312 1303650 3162374...
3 7 19 49 131 339 897 2327 6049 15485 39421  99651 251064 631044 1583740 3969304...
3 7 19 49 131 339 899 2343 6179 16039 41809 107261 276041 701555 1790848 4530538...
3 7 19 49 131 339 899 2345 6197 16203 42585 110963 288833 746717 1925057 4942513...
3 7 19 49 131 339 899 2345 6199 16223 42787 112015 294345 767319 2003283 5188119...
3 7 19 49 131 339 899 2345 6199 16225 42809 112259 295733 775251 2035247 5318433...
3 7 19 49 131 339 899 2345 6199 16225 42811 112283 296023 777041 2046335 5366435...
3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296049 777381 2048599 5381553...
3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777409 2048993 5384369...
3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049023 5384821...
3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049025 5384853...
3 7 19 49 131 339 899 2345 6199 16225 42811 112285 296051 777411 2049025 5384855...
...
		

Crossrefs

Cf. A116903 (b->infinity), A336818 (start at middle of box), A001411, A038373.

Formula

For n <= b, T(b,n) = A116903(n).
For n >= b^2, T(b,n) = 0 as the walks have more steps than there are free grid points inside the box.

A336988 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 2D square grid confined to an infinite strip of height 2h where the walk starts at coordinate (0,h).

Original entry on oeis.org

4, 10, 4, 22, 12, 4, 42, 34, 12, 4, 90, 82, 36, 12, 4, 182, 194, 98, 36, 12, 4, 382, 438, 262, 100, 36, 12, 4, 742, 1034, 650, 282, 100, 36, 12, 4, 1486, 2362, 1610, 754, 284, 100, 36, 12, 4, 2866, 5558, 3870, 1994, 778, 284, 100, 36, 12, 4
Offset: 1

Views

Author

Scott R. Shannon, Aug 10 2020

Keywords

Examples

			T(1,3) = 22. The five 3-step walks taking a first step to the right and upward or a step upward and then to the right are:
.
      +  +--+     +--+  +--+--+  +--+
      |     |     |     |        |  |
X--+--+  X--+  X--+     X        X  +
.
The same steps can be taken to the right then down, to the left then down, and to the left then up. There is also the two straight walks right and left. This give a total number of walks of 4*5+2 = 22.
.
The table begins:
.
4 10 22  42  90 182  382  742  1486  2866   5646  10878  21198   40694   78758...
4 12 34  82 194 438 1034 2362  5558 12662  29366  66330 151566  339514  767798...
4 12 36  98 262 650 1610 3870  9490 22830  55826 134242 326934  784770 1901246...
4 12 36 100 282 754 1994 5046 12786 31746  79566 196858 491506 1214262 3024890...
4 12 36 100 284 778 2142 5682 14986 38462  98762 249894 635290 1599394 4048366...
4 12 36 100 284 780 2170 5882 15970 42286 111554 288962 748414 1916762 4921146...
4 12 36 100 284 780 2172 5914 16230 43730 117810 311894 823682 2146886 5593690...
4 12 36 100 284 780 2172 5916 16266 44058 119842 321630 862674 2284682 6040622...
4 12 36 100 284 780 2172 5916 16268 44098 120246 324394 877210 2348022 6281498...
4 12 36 100 284 780 2172 5916 16268 44100 120290 324882 880866 2368982 6380418...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324930 881446 2373706 6409762...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881498 2374386 6415746...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374442 6416534...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374444 6416594...
4 12 36 100 284 780 2172 5916 16268 44100 120292 324932 881500 2374444 6416596...
		

Crossrefs

Cf. A336769 (start at origin), A001411 (h->infinity), A007825 (h=1), A116903, A038373, A336863, A336818.

Formula

For n <= h, T(h,n) = A001411(n).
Row 1 = T(1,n) = A007825(n).
Showing 1-2 of 2 results.