cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336838 Numerator of the arithmetic mean of the divisors of A003961(n).

This page as a plain text file.
%I A336838 #26 Aug 20 2020 21:24:22
%S A336838 1,2,3,13,4,6,6,10,31,8,7,13,9,12,12,121,10,62,12,52,18,14,15,30,19,
%T A336838 18,39,26,16,24,19,182,21,20,24,403,21,24,27,40,22,36,24,91,124,30,27,
%U A336838 363,133,38,30,39,30,78,28,60,36,32,31,52,34,38,62,1093,36,42,36,130,45,48,37,310,40,42,57,52,42,54,42
%N A336838 Numerator of the arithmetic mean of the divisors of A003961(n).
%C A336838 Ratio r(n) = a(n)/A336839(n) is multiplicative. For example r(3) = 3/1, r(4) = 13/3, thus r(12) = r(3)*r(4) = 13/1.
%C A336838 Conjecture: For all primes p with an odd exponent e, a(p^e) is a multiple of A048673(p). Note that q+1 is a divisor of (q+1)^e - sigma(q^e) = (q+1)^e - (1 + q + q^2 + ... + q^e) when e is odd, thus also A048673(p) = (q+1)/2 is, where q = A003961(p), thus the conjecture holds, unless the denominator (A336839) has enough prime factors of A048673(p).
%H A336838 Antti Karttunen, <a href="/A336838/b336838.txt">Table of n, a(n) for n = 1..16383</a>
%H A336838 Antti Karttunen, <a href="/A336838/a336838.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A336838 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A336838 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A336838 a(n) = A057020(A003961(n)).
%F A336838 a(n) = numerator(A003973(n)/A000005(n)).
%F A336838 a(n) = A003973(n) / A336856(n) = A003973(n) / gcd(A000005(n), A003973(n)).
%F A336838 a(p) = A048673(p) for all primes p.
%F A336838 a(p^3) = 2*A048673(p)^3 - 2*A048673(p)^2 + A048673(p). [The denominator A336839(p^3) = 1 for all p]
%o A336838 (PARI)
%o A336838 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A336838 A336838(n) = numerator(sigma(A003961(n))/numdiv(n));
%Y A336838 Cf. A000005, A003961, A003973, A048673, A057020, A336840, A336918.
%Y A336838 Cf. A336839 (denominators).
%K A336838 nonn,frac
%O A336838 1,2
%A A336838 _Antti Karttunen_, Aug 07 2020