This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336839 #22 Aug 17 2020 20:51:46 %S A336839 1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,5,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1, %T A336839 1,9,1,1,1,1,1,1,1,3,3,1,1,5,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,3, %U A336839 1,1,1,3,1,1,1,1,1,1,1,5,5,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,3,3,1,1,1,1,1 %N A336839 Denominator of the arithmetic mean of the divisors of A003961(n). %C A336839 Also denominator of A336841(n) / A000005(n). %C A336839 All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n. %H A336839 Antti Karttunen, <a href="/A336839/b336839.txt">Table of n, a(n) for n = 1..65537</a> %H A336839 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A336839 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A336839 a(n) = denominator(A003973(n)/A000005(n)). %F A336839 a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n). %F A336839 a(n) = A057021(A003961(n)). %F A336839 For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856] %F A336839 It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1. %F A336839 It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1. %o A336839 (PARI) %o A336839 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A336839 A336839(n) = denominator(sigma(A003961(n))/numdiv(n)); %Y A336839 Cf. A000005, A000225, A003961, A003973, A007814, A052940, A057021, A295664, A336840, A336841, A336856, A336931, A336932. %Y A336839 Cf. A336918 (positions of 1's), A336919 (of terms > 1). %Y A336839 Cf. A336837 and A336838 (numerators). %K A336839 nonn,frac %O A336839 1,4 %A A336839 _Antti Karttunen_, Aug 07 2020