cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336839 Denominator of the arithmetic mean of the divisors of A003961(n).

This page as a plain text file.
%I A336839 #22 Aug 17 2020 20:51:46
%S A336839 1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,5,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,
%T A336839 1,9,1,1,1,1,1,1,1,3,3,1,1,5,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,3,
%U A336839 1,1,1,3,1,1,1,1,1,1,1,5,5,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,3,3,3,1,1,1,1,1
%N A336839 Denominator of the arithmetic mean of the divisors of A003961(n).
%C A336839 Also denominator of A336841(n) / A000005(n).
%C A336839 All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.
%H A336839 Antti Karttunen, <a href="/A336839/b336839.txt">Table of n, a(n) for n = 1..65537</a>
%H A336839 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A336839 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A336839 a(n) = denominator(A003973(n)/A000005(n)).
%F A336839 a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
%F A336839 a(n) = A057021(A003961(n)).
%F A336839 For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
%F A336839 It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
%F A336839 It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.
%o A336839 (PARI)
%o A336839 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A336839 A336839(n) = denominator(sigma(A003961(n))/numdiv(n));
%Y A336839 Cf. A000005, A000225, A003961, A003973, A007814, A052940, A057021, A295664, A336840, A336841, A336856, A336931, A336932.
%Y A336839 Cf. A336918 (positions of 1's), A336919 (of terms > 1).
%Y A336839 Cf. A336837 and A336838 (numerators).
%K A336839 nonn,frac
%O A336839 1,4
%A A336839 _Antti Karttunen_, Aug 07 2020