This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336842 #9 Jul 02 2022 01:52:16 %S A336842 1,2,1,1,3,4,2,2,1,1,1,1,1,1,2,1,2,2,3,6,3,3,1,3,1,2,1,2,5,1,1,2,1,1, %T A336842 1,1,1,1,1,1,2,1,4,1,4,3,1,1,1,2,5,1,2,3,2,1,2,1,1,2,2,4,2,1,3,2,3,2, %U A336842 1,3,1,2,4,2,1,4,4,8,2,3,1,1,1,4,1,1,2,5,1,1,2,1,1,5,1,6,1,2,1,1,3,1,2,2,1 %N A336842 Number of trailing 1-bits in the binary representation of A003961(n): a(n) = A007814(1+A003961(n)). %H A336842 Antti Karttunen, <a href="/A336842/b336842.txt">Table of n, a(n) for n = 1..65537</a> %H A336842 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A336842 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A336842 a(n) = A007814(1+A003961(n)). %o A336842 (PARI) %o A336842 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A336842 A007814(n) = valuation(n,2); %o A336842 A336842(n) = A007814(1+A003961(n)); %o A336842 (Python) %o A336842 from math import prod %o A336842 from sympy import factorint, nextprime %o A336842 def A336842(n): return (~((m:=prod(nextprime(p)**e for p, e in factorint(n).items()))+1)& m).bit_length() # _Chai Wah Wu_, Jul 01 2022 %Y A336842 Cf. A003961, A007814, A246261 (positions of ones), A336843, A336844. %K A336842 nonn %O A336842 1,2 %A A336842 _Antti Karttunen_, Aug 06 2020