This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336845 #16 Aug 06 2020 23:27:56 %S A336845 1,6,10,27,14,60,22,108,75,84,26,270,34,132,140,405,38,450,46,378,220, %T A336845 156,58,1080,147,204,500,594,62,840,74,1458,260,228,308,2025,82,276, %U A336845 340,1512,86,1320,94,702,1050,348,106,4050,363,882,380,918,118,3000,364,2376,460,372,122,3780,134,444,1650,5103,476,1560 %N A336845 a(n) = A000005(n) * A003961(n), where A003961 is the prime shift towards larger primes, and A000005 gives the number of divisors of n, and also of A003961(n). %C A336845 Dirichlet convolution of A003961 with itself. %C A336845 Sequence is not injective, as it has duplicate values, for example: a(162) = a(243) = 18750. See also comments in A336475. %H A336845 Antti Karttunen, <a href="/A336845/b336845.txt">Table of n, a(n) for n = 1..16384</a> %H A336845 Antti Karttunen, <a href="/A336845/a336845.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A336845 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A336845 Multiplicative with a(prime(i)^e) = (e+1) * prime(1+i)^e. %F A336845 a(n) = A000005(n) * A003961(n). %F A336845 a(n) = A038040(A003961(n)). %F A336845 a(n) = A336841(n) + A003973(n). %F A336845 a(n) is odd if and only if n is a square. %o A336845 (PARI) %o A336845 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A336845 A336845(n) = (numdiv(n)*A003961(n)) %o A336845 (PARI) A336845(n) = { my(f = factor(n)); prod(i=1, #f~, (1+f[i,2]) * (nextprime(1+f[i, 1])^f[i,2])); }; %o A336845 (PARI) A336845(n) = sumdiv(n,d,A003961(d)*A003961(n/d)); %Y A336845 Cf. A000005, A000203, A000290, A003961, A038040, A336475. %Y A336845 Cf. also A336841, A336846 [= gcd(a(n),A003973(n))], A336847, A336848. %K A336845 nonn,mult %O A336845 1,2 %A A336845 _Antti Karttunen_, Aug 06 2020