This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336856 #17 Aug 17 2020 20:52:02 %S A336856 1,2,2,1,2,4,2,4,1,4,2,6,2,4,4,1,2,2,2,2,4,4,2,8,3,4,4,6,2,8,2,2,4,4, %T A336856 4,1,2,4,4,8,2,8,2,2,2,4,2,2,1,6,4,6,2,8,4,8,4,4,2,12,2,4,6,1,4,8,2,2, %U A336856 4,8,2,4,2,4,6,6,4,8,2,2,1,4,2,12,4,4,4,8,2,4,4,6,4,4,4,12,2,2,2,3,2,8,2,8,8 %N A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)). %H A336856 Antti Karttunen, <a href="/A336856/b336856.txt">Table of n, a(n) for n = 1..65537</a> %H A336856 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A336856 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A336856 a(n) = A009205(A003961(n)). %F A336856 a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)). %F A336856 a(n) = gcd(A000005(n), 2*A336840(n)). %F A336856 a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n). %F A336856 For n > 1, a(n) = A336841(n) / A336837(n). %F A336856 For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n. %o A336856 (PARI) %o A336856 A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; %o A336856 A336856(n) = gcd(numdiv(n), A003973(n)); %Y A336856 Cf. A000005, A003961, A003973, A009205, A336837, A336838, A336839, A336840, A336841. %K A336856 nonn %O A336856 1,2 %A A336856 _Antti Karttunen_, Aug 12 2020