cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336862 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h X 2h X 2h where the walk starts at the middle of the box's edge.

This page as a plain text file.
%I A336862 #34 Feb 21 2021 02:09:51
%S A336862 4,12,4,40,14,4,118,54,14,4,358,208,56,14,4,936,826,224,56,14,4,2600,
%T A336862 3232,936,226,56,14,4,6212,12688,3862,956,226,56,14,4,16068,48924,
%U A336862 16196,4026,958,226,56,14,4,34936,187276,67346,17246,4050,958,226,56,14,4
%N A336862 Table read by antidiagonals: T(h,n) is the number of n-step self avoiding walks on a 3D cubic lattice confined inside a box of size 2h X 2h X 2h where the walk starts at the middle of the box's edge.
%F A336862 For n <= h, T(h,n) = A259808(n).
%F A336862 Row 1 = T(1,n) = A335806(n).
%F A336862 For n >= (2h+1)^3, T(h,n) = 0 as the walk contains more steps than there are available lattice points in the 2h X 2h X 2h box.
%e A336862 T(1,2) = 12. A first step along either edge leading to the corner leaves two possible second steps. A first step to the center of either face can be followed by a second step to three edges or to the center of the box, four steps in all. Thus the total number of 2-step walks is 2*2+2*4 = 12.
%e A336862 .
%e A336862 The table begins:
%e A336862 .
%e A336862 4 12 40 118 358  936  2600  6212  16068   34936   83708   163452    357056...
%e A336862 4 14 54 208 826 3232 12688 48924 187276  705196 2627950  9670620  35231628...
%e A336862 4 14 56 224 936 3862 16196 67346 282676 1180326 4950936 20646098  86165926...
%e A336862 4 14 56 226 956 4026 17246 73588 316456 1358518 5860464 25266192 109288486...
%e A336862 4 14 56 226 958 4050 17478 75288 327778 1425340 6236152 27260378 119641050...
%e A336862 4 14 56 226 958 4052 17506 75600 330362 1444544 6360718 28020896 123963354...
%e A336862 4 14 56 226 958 4052 17508 75632 330766 1448280 6391426 28238732 125405300...
%e A336862 4 14 56 226 958 4052 17508 75634 330802 1448788 6396618 28285548 125766436...
%e A336862 4 14 56 226 958 4052 17508 75634 330804 1448828 6397242 28292536 125835068...
%e A336862 4 14 56 226 958 4052 17508 75634 330804 1448830 6397286 28293288 125844228...
%e A336862 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293336 125845120...
%e A336862 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845172...
%e A336862 4 14 56 226 958 4052 17508 75634 330804 1448830 6397288 28293338 125845174...
%Y A336862 Cf. A259808 (h->infinity), A335806 (h=1), A337023 (start at center of box), A337031 (start at center of face), A337035 (start at corner of box), A001412, A039648.
%K A336862 nonn,walk,tabl
%O A336862 1,1
%A A336862 _Scott R. Shannon_, Aug 14 2020