This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336864 #42 Aug 17 2020 22:24:18 %S A336864 0,24,2510,5210,8991,56384,348732,460719,867839,28997919,193889375, %T A336864 254181375,419321664,1018179999,2654951424,1297015971839, %U A336864 62061633644031 %N A336864 Bogotá numbers k such that k + 1 is also Bogotá number. %C A336864 a(18) > 10^15 if it exists. - _David A. Corneth_, Aug 06 2020 %C A336864 From _Chai Wah Wu_, Aug 17 2020: (Start) %C A336864 The following numbers are terms: %C A336864 2805402158142975 = 153931531311*(1*5*3*9*3*1*5*3*1*3*1*1) = 111822471227*(1*1*1*8*2*2*4*7*1*2*2*7) - 1. %C A336864 8748948067725824 = 2441112742111*(2*4*4*1*1*1*2*7*4*2*1*1*1) = 53339113353*(5*3*3*3*9*1*1*3*3*5*3) - 1. %C A336864 (End) %H A336864 Puzzling Stackexchange, <a href="https://puzzling.stackexchange.com/questions/98998/pairs-of-bogot%c3%a1-numbers?noredirect=1#comment281441_98998">Pairs of Bogotá numbers</a>, 2020. %e A336864 n | a(n) a(n)+1 %e A336864 -----+------------------------------------------------------------------ %e A336864 1 | 0 = 0 * 0 1 = 1 * 1 %e A336864 2 | 24 = 12 * (1*2) 25 = 5 * 5 %e A336864 3 | 2510 = 251 * (2*5*1) 2511 = 93 * (9*3) %e A336864 4 | 5210 = 521 * (5*2*1) 5211 = 193 * (1*9*3) %e A336864 5 | 8991 = 333 * (3*3*3) 8992 = 1124 * (1*1*2*4) %e A336864 6 | 56384 = 881 * (8*8*1) 56385 = 537 * (5*3*7) %e A336864 7 | 348732 = 3229 * (3*2*2*9) 348733 = 7117 * (7*1*1*7) %e A336864 8 | 460719 = 7313 * (7*3*1*3) 460720 = 11518 * (1*1*5*1*8) %e A336864 9 | 867839 = 17711 * (1*7*7*1*1) 867840 = 5424 * (5*4*2*4) %e A336864 10 | 28997919 = 119333 * (1*1*9*3*3*3) 28997920 = 51782 * (5*1*7*8*2) %Y A336864 Cf. A336826. %K A336864 nonn,more,base %O A336864 1,2 %A A336864 _Seiichi Manyama_, Aug 06 2020 %E A336864 a(11)-a(17) from _David A. Corneth_, Aug 06 2020