This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336870 #11 Aug 10 2020 00:24:13 %S A336870 1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,4,4,2,4,4,1,1,1,1,1,1,4,4,7,7,7,7, %T A336870 7,7,4,4,1,1,1,1,1,1,4,4,7,18,10,10,15,21,21,15,10,10,18,7,4,4,1,1,1, %U A336870 1,1,1,4,4,7,18,23,15,20,37,35,40,46,32,46,40,35,37,20,15,23,18,7,4,4,1,1,1 %N A336870 Irregular triangle read by rows where T(n,k) is the number of divisors d of the superprimorial A006939(n) with k prime factors (counting multiplicity), such that d and A006939(n)/d both have distinct prime multiplicities. %C A336870 Are there any zeros (cf. A336939)? %C A336870 A number has distinct prime multiplicities iff its prime signature is strict. %e A336870 Triangle begins: %e A336870 1 %e A336870 1 1 %e A336870 1 1 1 1 %e A336870 1 1 1 4 1 1 1 %e A336870 1 1 1 4 4 2 4 4 1 1 1 %e A336870 1 1 1 4 4 7 7 7 7 7 7 4 4 1 1 1 %e A336870 Row n = 4 counts the following divisors: %e A336870 1 7 25 27 16 112 400 432 3024 10800 75600 %e A336870 63 54 675 1350 1008 %e A336870 75 56 1400 1200 %e A336870 175 189 4725 2800 %t A336870 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336870 Table[Length[Select[Divisors[chern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&&PrimeOmega[#]==k&]],{n,0,6},{k,0,PrimeOmega[chern[n]]}] %Y A336870 A000124 gives row lengths. %Y A336870 A336419 gives row sums. %Y A336870 A336500 is the generalization to all positive integers. %Y A336870 A336939 is the version for factorials. %Y A336870 A000005 counts divisors. %Y A336870 A000110 counts divisors of superprimorials with distinct prime multiplicities. %Y A336870 A000142 lists factorials. %Y A336870 A000325 counts divisors of superprimorials with equal prime multiplicities. %Y A336870 A006939 lists superprimorials. %Y A336870 A130091 lists numbers with distinct prime multiplicities. %Y A336870 A181796 counts divisors with distinct prime multiplicities. %Y A336870 A327498 gives the maximum divisor of n with distinct prime multiplicities. %Y A336870 A336423 counts chains using A130091. %Y A336870 Cf. A022559, A027423, A048742, A071626, A098859, A118914, A124010, A336414, A336424, A336568, A336571, A336865, A336869. %K A336870 nonn,tabf %O A336870 0,11 %A A336870 _Gus Wiseman_, Aug 08 2020