This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336871 #9 Aug 11 2020 01:50:02 %S A336871 1,2,4,11,28,96,309,1256,4676,21647 %N A336871 Number of divisors d of A076954(n) with distinct prime multiplicities such that the numerator of A006939(n)/d also has distinct prime multiplicities. %C A336871 The sequence A006939 is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %C A336871 The sequence A076954 is A076954(n) = Product_{i=1..n} prime(i)^i. %e A336871 The a(0) = 1 through a(3) = 11 divisors: %e A336871 1 2 18 2250 %e A336871 1 9 1125 %e A336871 3 375 %e A336871 1 125 %e A336871 75 %e A336871 45 %e A336871 25 %e A336871 18 %e A336871 9 %e A336871 5 %e A336871 1 %t A336871 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A336871 cochern[n_]:=Product[Prime[i]^i,{i,n}]; %t A336871 Table[Length[Select[Divisors[cochern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,5}] %Y A336871 A336419 is the version for superprimorials. %Y A336871 A336500 is the generalization to all positive integers. %Y A336871 A000005 counts divisors. %Y A336871 A006939 lists superprimorials or Chernoff numbers. %Y A336871 A007425 counts divisors of divisors. %Y A336871 A076954 is a sister of superprimorials. %Y A336871 A130091 lists numbers with distinct prime multiplicities. %Y A336871 A181796 counts divisors with distinct prime multiplicities. %Y A336871 A327523 counts factorizations of elements of A130091 using elements of A130091. %Y A336871 A336422 counts divisible pairs of divisors, both in A130091. %Y A336871 A336424 counts factorizations using A130091. %Y A336871 Cf. A001055, A022559, A022915, A027423, A091050, A124010, A317829, A327498, A327527, A336420, A336421, A336571. %K A336871 nonn,more %O A336871 0,2 %A A336871 _Gus Wiseman_, Aug 06 2020