cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336882 a(0) = 1; for k >= 0, 0 <= i < 2^k, a(2^k + i) = m_k * a(i), where m_k is the least odd number not in terms 0..2^k - 1.

Original entry on oeis.org

1, 3, 5, 15, 7, 21, 35, 105, 9, 27, 45, 135, 63, 189, 315, 945, 11, 33, 55, 165, 77, 231, 385, 1155, 99, 297, 495, 1485, 693, 2079, 3465, 10395, 13, 39, 65, 195, 91, 273, 455, 1365, 117, 351, 585, 1755, 819, 2457, 4095, 12285, 143, 429, 715, 2145, 1001
Offset: 0

Views

Author

Peter Munn, Aug 16 2020

Keywords

Comments

A permutation of the odd numbers.
Every positive integer, m, is the product of a unique subset of the terms of A050376. The members of the subset are often known as the Fermi-Dirac factors of m. In this sequence, the odd numbers appear lexicographically according to their Fermi-Dirac factors (with those factors listed in decreasing order). The equivalent sequence for all positive integers is A052330.
The sequence has a conditional exponential identity shown in the formula section. This relies on the offset being 0, as in related sequences, notably A019565 and A052330.

Examples

			a(0) = 1, as specified explicitly.
m_0 = 3, the least odd number not in terms 0..0.
So a(1) = a(2^0 + 0) = m_0 * a(0) = 3 * 1 = 3.
m_1 = 5, the least odd number not in terms 0..1.
So a(2) = a(2^1 + 0) = m_1 * a(0) = 5 * 1 = 5;
and a(3) = a(2^1 + 1) = m_1 * a(1) = 5 * 3 = 15.
The initial terms are tabulated below, equated with the product of their Fermi-Dirac factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
   n     a(n)
   0    1,
   1    3 = 3,
   2    5 = 5,
   3   15 = 5 * 3,
   4    7 = 7,
   5   21 = 7 * 3,
   6   35 = 7 * 5,
   7  105 = 7 * 5 * 3,
   8    9 = 9,
   9   27 = 9 * 3,
  10   45 = 9 * 5,
  11  135 = 9 * 5 * 3,
  12   63 = 9 * 7.
		

Crossrefs

Permutation of A005408.
Subsequence of A052330.
Subsequences: A062090, A332382 (squarefree terms).
A003986, A003987, A004198, A059896, A059897 are used to express relationship between terms of this sequence.

Formula

a(2^k) = min({ 2*m+1 : m >= 0, 2*m+1 <> a(j), 0 <= j < 2^k }) = A062090(k+2).
If x AND y = 0, a(x+y) = a(x) * a(y), where AND denotes the bitwise operation, A004198(.,.).
a(x XOR y) = A059897(a(x), a(y)), where XOR denotes bitwise exclusive-or, A003987(.,.).
a(x OR y) = A059896(a(x), a(y)), where OR denotes the bitwise operation, A003986(.,.).