cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336893 Lexicographically earliest infinite sequence of distinct positive terms such that the sum of digits of the first n terms is coprime to their concatenation.

This page as a plain text file.
%I A336893 #57 May 30 2022 02:32:41
%S A336893 1,3,7,2,4,5,9,6,13,8,19,11,15,21,10,17,22,23,12,24,25,14,27,16,20,28,
%T A336893 26,31,29,18,33,37,35,39,40,41,34,42,44,43,32,45,30,46,47,36,49,38,48,
%U A336893 51,55,53,61,50,57,60,63,52,59,64,62,66,67,54,65,58,68,69
%N A336893 Lexicographically earliest infinite sequence of distinct positive terms such that the sum of digits of the first n terms is coprime to their concatenation.
%C A336893 Conjecture: A permutation of the positive integers.
%C A336893 Comment from _N. J. A. Sloane_, Aug 15 2020: Is there a proof that this is well-defined, i.e. that the sequence exists?  If so, the condition that a(1)=1 can be omitted from the definition.
%C A336893 Yes, this sequence is well defined: an upper limit for a(n+1) is given by N = concatenate(M, K) with M = max{ a(k); k <= n } and K = A068695(concatenate(a(1), ..., a(n), M)). This N is distinct from (since by construction larger than) all preceding terms, it will yield a prime number for the concatenation, certainly larger than its digit sum, so satisfies all required conditions. [This proof resulted from ideas from several OEIS editors and a new proof that A068695 is always well defined, see there.] - _M. F. Hasler_, Nov 09 2020
%D A336893 G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers, Oxford University Press,1945,Chapter II.
%D A336893 G.A. Jones and J. Mary Jones, Elementary Number Theory, London: Springer-Verlag, 2005, Chapter 2.
%H A336893 Michael De Vlieger, <a href="/A336893/b336893.txt">Table of n, a(n) for n = 1..10000</a>
%H A336893 Michael De Vlieger, Plot of <a href="http://www.vincico.com/seq/a336893-1.png">1024 terms</a> and <a href="http://www.vincico.com/seq/a336893-1a.png">3000 terms</a>.
%H A336893 Michael De Vlieger, Plot of <a href="http://www.vincico.com/seq/a336893-3.png">a(n) - n</a> for 1 <= n <= 3000.
%e A336893 Since a(1)=1, a(2) cannot be 2 because 1+2=3 and 3|12. However, 1+3=4 and GCD(13,4)=1, so a(2)=3.
%p A336893 #Code by Carl Love; (Mapleprimes)
%p A336893 Seq1 := proc(N::posint)
%p A336893 local
%p A336893   S:=Array(1 .. 1, [1]),
%p A336893 SD:=1,
%p A336893 C:=1,
%p A336893   Used := table([1= ()]),
%p A336893   k, j, C1, SD1;
%p A336893   for k from 2 to N do
%p A336893       for j from 2 do
%p A336893           if not assigned(Used[j]) then
%p A336893              C1 := Scale10(C, length(j))+j;
%p A336893              SD1 := SD+`+`(convert(j, base, 10)[]);
%p A336893              if igcd(C1, SD1) = 1 then
%p A336893                  C := C1; SD := SD1; Used[j] :=() ; S(k) := j;
%p A336893                  break
%p A336893              end if
%p A336893          end if
%p A336893        end do
%p A336893      end do;
%p A336893     seq(x,x=S)
%p A336893   end proc:
%p A336893   Seq1(200);
%t A336893 Nest[Append[#, Block[{k = 2, d = Map[IntegerDigits, #]}, While[Nand[FreeQ[#, k], GCD[FromDigits[#], Total[#]] &@ Flatten@ Append[d, IntegerDigits[k]] == 1], k++]; k]] &, {1}, 100]
%Y A336893 Cf. A068695, A083754, A045572
%K A336893 nonn,base
%O A336893 1,2
%A A336893 _David James Sycamore_ and _Michael De Vlieger_, Aug 07 2020