A336905 Numbers n such that for any i > 0 there is some j > 0 such that the prime(i)-adic valuation of n, say x, equals the prime(j)-adic valuation of n and x = abs(i-j) (where prime(k) denotes the k-th prime number and the p-adic valuation of a number is the greatest m such that p^m divides that number).
1, 6, 15, 30, 35, 77, 100, 105, 143, 210, 221, 323, 385, 437, 441, 462, 667, 858, 899, 1001, 1147, 1155, 1326, 1517, 1763, 1938, 2021, 2145, 2310, 2431, 2491, 2622, 2744, 3025, 3127, 3315, 3599, 4002, 4087, 4199, 4290, 4757, 4845, 5005, 5183, 5394, 5767, 6006
Offset: 1
Keywords
Examples
Regarding 14300: - 14300 = 2^2 * 5^2 * 11 * 13 = prime(1)^2 * prime(3)^2 * prime(5) * prime(6), - the 2-adic valuation is in correspondence with the 5-adic valuation, - the 11-adic valuation is in correspondence with the 13-adic valuation, - the p-adic valuation is in correspondence with itself for any prime number p that does not divide 14300, - so 14300 is a term.
Programs
-
PARI
is(n) = { my (f=factor(n), x=f[,2]~, pi=apply(primepi, f[,1]~), u, v); for (k=1, #x, if (((u=setsearch(pi, pi[k]-x[k])) && x[u]==x[k]) || ((v=setsearch(pi, pi[k]+x[k])) && x[v]==x[k]), "OK", return (0))); return (1) }
Comments