This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336921 #10 Aug 10 2020 00:19:48 %S A336921 0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,2,0,2,1,0,1,1,0,2,1,0,0,3,1,0,0,1,2, %T A336921 1,0,3,2,1,1,2,0,2,1,1,1,1,0,0,2,2,1,3,0,2,0,2,3,3,1,1,0,0,0,2,1,3,2, %U A336921 1,1,2,0,4,3,2,2,1,1,2,1,0,2,2,0,3,2,3,1,4,1,1,1,0,1,3,0,2,0,1,2,4,2,2,1,1 %N A336921 a(n) = A331410(n) - A087436(n). %C A336921 Totally additive because both A087436 and A331410 are. %H A336921 Antti Karttunen, <a href="/A336921/b336921.txt">Table of n, a(n) for n = 1..65537</a> %F A336921 a(n) = A331410(A336467(n)). %F A336921 a(n) = A331410(n) - A087436(n). %F A336921 a(n) = A336922(n) - A046660(A000265(n)). %F A336921 For all n >= 1, a(n) <= A336118(n). %o A336921 (PARI) %o A336921 A000265(n) = (n>>valuation(n,2)); %o A336921 A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); %o A336921 A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); }; %o A336921 A336921(n) = A331410(A336467(n)); %Y A336921 Cf. A000265, A046660, A087436, A331410, A336467, A336922. %Y A336921 Cf. also A336118, A336396. %K A336921 nonn %O A336921 1,17 %A A336921 _Antti Karttunen_, Aug 09 2020