This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336930 #22 Jul 05 2022 23:30:33 %S A336930 1,3,4,9,11,12,13,16,23,25,27,31,33,36,37,39,44,47,48,49,52,59,64,69, %T A336930 71,75,81,83,89,92,93,97,99,100,107,108,109,111,117,121,124,131,132, %U A336930 139,141,143,144,147,148,151,156,167,169,176,177,179,188,191,192,193,196,207,208,213,225,227,229,236,239,243,249,251 %N A336930 Numbers k such that the 2-adic valuation of A003973(k), the sum of divisors of the prime shifted k is equal to the 2-adic valuation of the number of divisors of k. %C A336930 Numbers k for which A295664(k) is equal to A336932(k). Note that A295664(A003961(n)) = A295664(n). %C A336930 Numbers k such that A003961(A007913(k)) [or equally, A007913(A003961(k))] is in A004613, i.e., has only prime divisors of the form 4k+1. %C A336930 Subsequences include squares (A000290), and also primes p which when prime-shifted [as A003961(p)] become primes of the form 4k+1 (A002144), and all their powers as well as the products between these. %o A336930 (PARI) %o A336930 A007814(n) = valuation(n, 2); %o A336930 A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); }; %o A336930 isA336930(n) = !A336931(n); %o A336930 (PARI) %o A336930 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A336930 isA004613(n) = (1==(n%4) && 1==factorback(factor(n)[, 1]%4)); \\ After code in A004613. %o A336930 isA336930(n) = isA004613(A003961(core(n))); %o A336930 (Python) %o A336930 from math import prod %o A336930 from itertools import count, islice %o A336930 from sympy import factorint, nextprime, divisor_count %o A336930 def A336930_gen(startvalue=1): # generator of terms >= startvalue %o A336930 return filter(lambda n:(~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()==(~(k:=int(divisor_count(n))) & k-1).bit_length(),count(max(startvalue,1))) %o A336930 A336930_list = list(islice(A336930_gen(),30)) # _Chai Wah Wu_, Jul 05 2022 %Y A336930 Positions of zeros in A336931. %Y A336930 Cf. A000290, A002144, A003961, A003973, A004613, A007814, A007913, A295664, A336918, A336932, A336937. %K A336930 nonn %O A336930 1,2 %A A336930 _Antti Karttunen_, Aug 17 2020