This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336940 #28 Aug 27 2020 10:09:17 %S A336940 1,1,1,2,2,4,6,12,12,20,30,60,72,144,216,336,336,672,864,1728,2160, %T A336940 3200,4800,9600,10560,14784,22176,28224,35280,70560,86400,172800, %U A336940 172800,245760,368640,497664,559872,1119744,1679616,2363904,2626560,5253120,6451200,12902400,16128000 %N A336940 Number of odd divisors of n!. %H A336940 Seiichi Manyama, <a href="/A336940/b336940.txt">Table of n, a(n) for n = 0..10000</a> %F A336940 a(n) = A001227(n!). %F A336940 a(n) = A000005(A049606(n)). %F A336940 a(n) + A337257(n) = A027423(n) = A000005(n!). %F A336940 From _Seiichi Manyama_, Aug 27 2020: (Start) %F A336940 If p is odd prime, a(p) = 2 * a(p-1). %F A336940 a(n) = A027423(n) / A113474(n) for n > 0. (End) %e A336940 The a(1) = 1 through a(8) = 12 divisors: %e A336940 1 1 1 1 1 1 1 1 %e A336940 3 3 3 3 3 3 %e A336940 5 5 5 5 %e A336940 15 9 7 7 %e A336940 15 9 9 %e A336940 45 15 15 %e A336940 21 21 %e A336940 35 35 %e A336940 45 45 %e A336940 63 63 %e A336940 105 105 %e A336940 315 315 %t A336940 Table[Length[Select[Divisors[n!],OddQ]],{n,0,15}] %o A336940 (PARI) a(n) = sumdiv(n!, d, d%2); \\ _Michel Marcus_, Aug 24 2020 %o A336940 (PARI) a(n) = numdiv(prod(k=1, n, k >> valuation(k, 2))); \\ _Michel Marcus_, Aug 27 2020 %Y A336940 A049606 gives the maximum among these divisors, with quotient A060818. %Y A336940 A337257 is the even version. %Y A336940 A000265 gives the maximum odd divisor of n. %Y A336940 A001227 counts odd divisors. %Y A336940 A183063 counts even divisors. %Y A336940 Cf. A000005, A001013, A001055, A006939, A113474, A124010, A253249. %Y A336940 Factorial numbers: A000142, A022559, A027423 (divisors), A048656, A071626, A076716 (factorizations), A325272, A325273, A325617, A336414, A336498. %K A336940 nonn %O A336940 0,4 %A A336940 _Gus Wiseman_, Aug 23 2020 %E A336940 a(36)-a(44) from _Seiichi Manyama_, Aug 26 2020