This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336963 #10 Aug 11 2020 01:25:28 %S A336963 0,1,2,3,6,5,4,7,14,13,10,9,12,11,8,15,30,29,26,25,22,21,18,17,28,27, %T A336963 20,19,24,23,16,31,62,61,58,57,54,53,50,49,46,45,42,41,38,37,34,33,60, %U A336963 59,52,51,44,43,36,35,56,55,40,39,48,47,32,63,126,125,122 %N A336963 Left-rotate run-lengths of consecutive equal digits in binary representation of n. %C A336963 This sequence is a permutation of the nonnegative integers, with inverse A336962. %H A336963 Rémy Sigrist, <a href="/A336963/b336963.txt">Table of n, a(n) for n = 0..8191</a> %H A336963 Rémy Sigrist, <a href="/A336963/a336963.png">Colored scatterplot of the first 2^16 terms</a> (where the color is function of A090996(n)) %H A336963 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A336963 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A336963 a(n) = n iff n = 0 or n belongs to A140690. %e A336963 The first terms, in decimal and in binary, are: %e A336963 n a(n) bin(n) bin(a(n)) %e A336963 -- ---- ------ --------- %e A336963 0 0 0 0 %e A336963 1 1 1 1 %e A336963 2 2 10 10 %e A336963 3 3 11 11 %e A336963 4 6 100 110 %e A336963 5 5 101 101 %e A336963 6 4 110 100 %e A336963 7 7 111 111 %e A336963 8 14 1000 1110 %e A336963 9 13 1001 1101 %e A336963 10 10 1010 1010 %e A336963 11 9 1011 1001 %e A336963 12 12 1100 1100 %e A336963 13 11 1101 1011 %e A336963 14 8 1110 1000 %e A336963 15 15 1111 1111 %o A336963 (PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2,2)); n\=2^v; r=concat(v,r)); r } %o A336963 fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v } %o A336963 a(n) = { my (r=toruns(n)); fromruns(vector(#r, k, r[1+k%#r])) } %Y A336963 Cf. A006257, A090996, A101211, A140690, A336962. %K A336963 nonn,base %O A336963 0,3 %A A336963 _Rémy Sigrist_, Aug 09 2020