This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336964 #14 Aug 13 2020 10:11:45 %S A336964 1,2,3,2,5,2,3,7,2,3,2,3,2,5,11,2,3,13,2,7,3,5,2,17,2,3,19,2,5,3,7,2, %T A336964 11,23,2,3,2,5,2,13,3,2,7,29,2,3,5,31,2,5,3,11,2,17,5,7,2,3,37,2,19,3, %U A336964 13,2,3,5,41,2,3,7,43,2,11,2,3,5,2,23,47,2,3 %N A336964 Irregular triangle in which first row is 1, n-th row (n > 1) lists distinct prime numbers in the prime tower factorization of n. %C A336964 The prime tower factorization of a number is defined in A182318. %C A336964 The n-th row includes the n-th row of A027748. %H A336964 Rémy Sigrist, <a href="/A336964/b336964.txt">Table of n, a(n) for n = 1..10001</a> (rows for n = 1..4045) %e A336964 Triangle begins: %e A336964 1 [1] %e A336964 2 [2] %e A336964 3 [3] %e A336964 4 [2] %e A336964 5 [5] %e A336964 6 [2, 3] %e A336964 7 [7] %e A336964 8 [2, 3] %e A336964 9 [2, 3] %e A336964 10 [2, 5] %e A336964 11 [11] %e A336964 12 [2, 3] %e A336964 13 [13] %e A336964 14 [2, 7] %e A336964 15 [3, 5] %o A336964 (PARI) row(n) = { my (f=factor(n), p=f[,1]~); for (k=1, #f~, if (f[k,2]>1, p=concat(p, row(f[k,2])));); if (#p==0, [1], Set(p)) } %Y A336964 Cf. A027748, A115588 (row lengths), A182318, A336965. %K A336964 nonn,tabf %O A336964 1,2 %A A336964 _Rémy Sigrist_, Aug 09 2020