This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336975 #19 May 06 2021 06:00:14 %S A336975 1,1,4,9,22,47,107,221,468,953,1932,3814,7560,14625,28192,53757, %T A336975 101827,190907,356362,659716,1215314,2224968,4053914,7346367,13260001, %U A336975 23822114,42629786,75991017,134991954,238948942,421656911,741750026,1301116634,2275985891,3971022904 %N A336975 Expansion of Product_{k>=1} 1/(1 - x^k * (k + x)). %H A336975 Seiichi Manyama, <a href="/A336975/b336975.txt">Table of n, a(n) for n = 0..1000</a> %F A336975 G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d). %F A336975 a(n) ~ c * n * phi^(n+1) / 5, where c = Product_{k>=3} 1/(1 - 1/phi^k*(k + 1/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, May 06 2021 %t A336975 m = 34; CoefficientList[Series[Product[1/(1 - x^k*(k + x)), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, May 01 2021 *) %o A336975 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(k+x))) %o A336975 (PARI) N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d)))) %Y A336975 Cf. A006906, A227681, A336976, A336977, A336978, A336979, A336980. %K A336975 nonn %O A336975 0,3 %A A336975 _Seiichi Manyama_, Aug 09 2020