This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336987 #13 Aug 22 2020 02:37:24 %S A336987 3,2,2,1,9,4,1,9,5,8,4,2,4,3,3,6,5,1,5,2,4,3,5,9,3,6,1,1,7,7,2,2,8,8, %T A336987 4,3,9,9,1,2,3,9,0,2,7,3,6,7,0,7,8,1,7,7,8,5,7,9,3,4,2,6,1,0,3,8,2,9, %U A336987 5,4,1,8,3,2,7,5,3,5,9,7,1,0,4,3,4,7,7,8,3,1,7,0,6,5,9,1,1,3,9,7 %N A336987 Decimal expansion of Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n). %C A336987 The series u(n) = sqrt(n)^log(n)/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo. %D A336987 J. Moisan & A. Vernotte, Analyse, Topologie et Séries, Exercices corrigés de Mathématiques Spéciales, Ellipses, 1991, Exercice B-1 a-3 pp. 70, 87-88. %F A336987 Equals Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n). %e A336987 32.219419584243365152435936117722884... %p A336987 evalf(sum(sqrt(n)^log(n)/log(n)^sqrt(n), n=2..infinity), 120); %o A336987 (PARI) default(realprecision, 100); sumpos(n=2, sqrt(n)^log(n)/log(n)^sqrt(n)) \\ _Michel Marcus_, Aug 10 2020 %Y A336987 Cf. A099870, A308915, A336284, A336741. %K A336987 nonn,cons %O A336987 2,1 %A A336987 _Bernard Schott_, Aug 10 2020 %E A336987 a(37)-a(101) from _Robert Price_, Aug 21 2020