cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336990 Expansion of Product_{k>=1} 1/(1 - x^k / (1 - k*x)).

This page as a plain text file.
%I A336990 #14 Aug 10 2020 09:26:33
%S A336990 1,1,3,8,22,62,182,560,1822,6316,23467,93762,402989,1858904,9165303,
%T A336990 48065800,266791060,1560140592,9573440644,61431041813,411006873603,
%U A336990 2859978776644,20653331408062,154494203986783,1195107012223439,9546189429869925,78632580076861376,667111706008969377
%N A336990 Expansion of Product_{k>=1} 1/(1 - x^k / (1 - k*x)).
%F A336990 G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} 1 / (d * (1 - k/d * x)^d)).
%t A336990 m = 27; CoefficientList[Series[Product[1/(1 - x^k/(1 - k*x)), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, Aug 10 2020 *)
%o A336990 (PARI) N=40; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-k*x)))
%o A336990 (PARI) N=40; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-k/d*x)^d)))))
%Y A336990 Cf. A227682, A336989, A336991.
%K A336990 nonn
%O A336990 0,3
%A A336990 _Seiichi Manyama_, Aug 10 2020