This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337009 #19 Apr 30 2023 15:55:01 %S A337009 1,1,1,2,1,1,3,3,1,1,5,5,3,1,1,8,11,6,3,1,1,13,19,13,6,3,1,1,21,37,25, %T A337009 14,6,3,1,1,34,65,52,27,14,6,3,1,1,55,120,98,58,28,14,6,3,1,1,89,210, %U A337009 191,113,60,28,14,6,3,1,1,144,376,360,229,119,61,28,14,6,3,1,1,233,654,678,443,244,121,61,28,14,6,3,1,1 %N A337009 Triangle of the Multiset Transform of the Fibonacci Sequence. %C A337009 Short definition of the Multiset Transformation: supposed we have F(w) distinct objects of weight w. Then T(n,k) is the number of bags of objects with total weight n containing k objects. Multisets means that objects may appear more than once in the bag, but the order of the objects in the bag does not matter. %C A337009 Apparently A200544 is the limit of the reversed rows as n approaches infinity. %H A337009 Alois P. Heinz, <a href="/A337009/b337009.txt">Rows n = 1..200, flattened</a> %H A337009 <a href="/index/Mu#multiplicative_completely">Index to Sequence pairs related by Multiset transformations</a> %F A337009 G.f.: Product_{j>=1} 1/(1-y*x^j)^Fibonacci(j). - _Jean-François Alcover_, Oct 29 2021 %F A337009 Sum_{k=0..n} (-1)^k * T(n,k) = A357475(n). - _Alois P. Heinz_, Apr 30 2023 %e A337009 The triangle starts with rows n>=1 and columns k>=1: %e A337009 1 %e A337009 1 1 %e A337009 2 1 1 %e A337009 3 3 1 1 %e A337009 5 5 3 1 1 %e A337009 8 11 6 3 1 1 %e A337009 13 19 13 6 3 1 1 %e A337009 21 37 25 14 6 3 1 1 %e A337009 34 65 52 27 14 6 3 1 1 %e A337009 55 120 98 58 28 14 6 3 1 1 %e A337009 89 210 191 113 60 28 14 6 3 1 1 %e A337009 144 376 360 229 119 61 28 14 6 3 1 1 %e A337009 233 654 678 443 244 121 61 28 14 6 3 1 1 %e A337009 377 1149 1255 866 481 250 122 61 28 14 6 3 1 1 %e A337009 ... %p A337009 F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end: %p A337009 b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n, %p A337009 add(binomial(F(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i))) %p A337009 end: %p A337009 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): %p A337009 seq(T(n), n=1..12); # _Alois P. Heinz_, Oct 29 2021 %t A337009 nn = 13; %t A337009 Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^Fibonacci[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* _Jean-François Alcover_, Oct 29 2021 *) %Y A337009 Cf. A000045 (column k=1), A089098 (column k=2), A166861 (row sums), A200544 (limiting row?), A357475. %K A337009 nonn,tabl %O A337009 1,4 %A A337009 _R. J. Mathar_, Aug 11 2020