This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337015 #71 Aug 17 2025 21:11:59 %S A337015 1,1,2,9,20,279,512,19087,71602,636365,1517042,321965982,240609602, %T A337015 8809543877,144729615032,26818608209252,6603755558402,2737593592637477 %N A337015 Number of distinct transitive subgroups of S_n, counting conjugates as distinct. %C A337015 This sequence is the labeled version of A002106. I have proven that A005432(p)-a(p) == 1 (mod p) if p is prime. Based on n<= 18, %C A337015 I have conjectured that log(A005432(n)/a(n)) > (n-1)/2 for n prime and log(A005432(n)/a(n)) < (n-1)/2 for n composite. %C A337015 L. Pyber shows c^{n^2*(1+o(1))} <= a(n) <= d^{n^2*(1+o(1))}, c=2^{1/16}, d=24^{1/6}; conjectures lower bound is accurate. %H A337015 John Erickson, <a href="/A337015/a337015_3.pdf">COUNTING TRANSITIVE SUBGROUPS OF Sn</a> %H A337015 L. Pyber, <a href="https://www.jstor.org/stable/2946623">Enumerating Finite Groups of Given Order</a>, Ann. Math. 137 (1993), 203-220. %e A337015 For n = 4 the following 9 subgroups of S_4 are transitive: %e A337015 Group( [ (1,4)(2,3), (1,3)(2,4) ] ) %e A337015 Group( [ (1,3,2,4), (1,2)(3,4) ] ) %e A337015 Group( [ (1,4,3,2), (1,3)(2,4) ] ) %e A337015 Group( [ (1,2,4,3), (1,4)(2,3) ] ) %e A337015 Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] ) %e A337015 Group( [ (1,2)(3,4), (1,3)(2,4), (1,4) ] ) %e A337015 Group( [ (1,2)(3,4), (1,4)(2,3), (2,4) ] ) %e A337015 Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] ) %e A337015 Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] ) %o A337015 (GAP) %o A337015 NrTransSubSn:=function(n) %o A337015 local s,cnt,i,u,no; %o A337015 s:=SymmetricGroup(n); %o A337015 cnt:=0; %o A337015 for i in [1..NrTransitiveGroups(n)] do %o A337015 u:=TransitiveGroup(n,i); %o A337015 no:=Normalizer(s,u); %o A337015 cnt:=cnt+IndexNC(s,no); %o A337015 Print("Class ",i,", found ",IndexNC(s,no)," new, total: ",cnt,"\n"); %o A337015 od; %o A337015 return cnt; %o A337015 end; # _Alexander Hulpke_ %Y A337015 Cf. A005432, A002106. %K A337015 nonn,more %O A337015 1,3 %A A337015 _John Erickson_ and _Alexander Hulpke_, Nov 21 2020