A337032 a(n) = (n*sigma_9(n) - tau(n))/7 = (A282254(n) - A000594(n))/7, where tau is Ramanujan's tau, sigma_9(n) = Sum_{d divides n} d^9.
0, 150, 8400, 150300, 1394400, 8656200, 40356000, 153679800, 498153600, 1431378900, 3705270000, 8863150800, 19694152800, 41402744400, 82382680800, 157380332400, 288000115200, 511088547150, 875865085200, 1465721632200, 2382961862400, 3801687211800, 5918070367200, 9075809181600
Offset: 1
Keywords
Examples
a(2) = (n*sigma_9(2) - tau(2))/7 = (2*(1^9+2^9) - (-24))/7 = 1050/7 = 150; a(3) = (n*sigma_9(3) - tau(3))/7 = (3*(1^9+3^9) - 252)/7 = 58800/7 = 8400.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Wikipedia, Congruences for the tau function.
Programs
-
Mathematica
a[n_] := (n * DivisorSigma[9, n] - RamanujanTau[n]) / 7; Array[a, 24] (* Amiram Eldar, Jan 10 2025 *)
-
PARI
a(n) = (n*sigma(n, 9) - polcoeff( x * eta(x + x * O(x^n))^24, n))/7;
Comments