This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337047 #15 Feb 06 2021 21:59:27 %S A337047 405,412,850,25315,49419,50127,224315,293394,308700,697136,801350, %T A337047 811910,997425,1118520,1152000,1177250,1550520,1659350,1725332, %U A337047 1739640,1824500,1976895,2141150,2580640,2580831,3530466,3718376,4050405,4459455,4536532,4577732,4832796,5173100,5510287,5601570,5603989,5609439 %N A337047 Numbers k such that A001414(k) and A001414(A004086(k)) are twin primes p, p+2. %H A337047 Robert Israel, <a href="/A337047/b337047.txt">Table of n, a(n) for n = 1..150</a> %e A337047 a(3)=850 is in the sequence because A001414(850)=2+5+5+17=29, A001414(58)=2+29=31, and (29,31) is a pair of twin primes. %p A337047 revdigs:= proc(n) local L,k; %p A337047 L:= convert(n,base,10); %p A337047 add(L[-k]*10^(k-1),k=1..nops(L)) %p A337047 end proc: %p A337047 filter:= proc(n) local a,b; %p A337047 a:= convert(map(convert,ifactors(n)[2],`*`),`+`); %p A337047 if not isprime(a) then return false fi; %p A337047 b:= convert(map(convert,ifactors(revdigs(n))[2],`*`),`+`); %p A337047 b = a+2 and isprime(b) %p A337047 end proc: %p A337047 select(filter, [$1 .. 10^7]); %Y A337047 Cf. A001097, A001414, A004086. Subsequence of A100118. %K A337047 nonn,base %O A337047 1,1 %A A337047 _J. M. Bergot_ and _Robert Israel_, Aug 12 2020