This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337048 #11 Dec 06 2020 06:26:37 %S A337048 1,0,1,1,0,1,0,2,0,1,1,0,3,0,1,1,3,0,4,0,1,1,2,6,0,5,0,1,2,4,3,10,0,6, %T A337048 0,1,2,6,10,4,15,0,7,0,1,4,7,12,20,5,21,0,8,0,1,4,14,18,20,35,6,28,0, %U A337048 9,0,1,7,15,33,39,30,56,7,36,0,10,0,1,9,28,39,64,75,42,84,8,45,0,11,0,1,13,35,75,86,110 %N A337048 Triangle T(n,k) read by rows: the number of fountains of n coins composed of k inseparable fountains of coins placed side-by-side. %C A337048 A fountain of coins is called "inseparable" here if it cannot be split into 2 fountains of coins by a vertical cut without slicing a coin. That means: inseparable fountains have "full" second rows. They are basically counted in A291148 (apart from a sign). %C A337048 The ordinary generating function of column k is g(x)^k, where g(x) = x +x^3 +x5 +x^6+.. is the ordinary generating function of column k=1 and g(x) is also the INVERTi transform of A005169. %e A337048 The triangle starts for n>=1, 1<=k<=n (row sums after semicolons) as %e A337048 1 ; 1 %e A337048 0 1 ; 1 %e A337048 1 0 1 ; 2 %e A337048 0 2 0 1 ; 3 %e A337048 1 0 3 0 1 ; 5 %e A337048 1 3 0 4 0 1 ; 9 %e A337048 1 2 6 0 5 0 1 ; 15 %e A337048 2 4 3 10 0 6 0 1 ; 26 %e A337048 2 6 10 4 15 0 7 0 1 ; 45 %e A337048 4 7 12 20 5 21 0 8 0 1 ; 78 %e A337048 4 14 18 20 35 6 28 0 9 0 1 ; 135 %e A337048 7 15 33 39 30 56 7 36 0 10 0 1 ; 234 %e A337048 9 28 39 64 75 42 84 8 45 0 11 0 1 ; 406 %e A337048 13 35 75 86 110 132 56 120 9 55 0 12 0 1 ; 704 %e A337048 19 56 94 164 171 174 217 72 165 10 66 0 13 0 1 ; 1222 %e A337048 25 80 162 212 315 315 259 338 90 220 11 78 0 14 0 1 ; 2120 %e A337048 38 114 228 384 430 552 546 368 504 110 286 12 91 0 15 0 1 ; 3679 %e A337048 51 174 349 538 800 810 903 900 504 725 132 364 13 105 0 16 0 1 ; 6385 %Y A337048 Cf. A005169 (row sums), A291148 (k=1, reversed sign). %K A337048 nonn,tabl,easy %O A337048 1,8 %A A337048 _R. J. Mathar_, Aug 12 2020