cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337052 Numbers k such that the powerful part of k has an even number of prime divisors counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2020

Keywords

Comments

Numbers k such that A001222(A057521(k)) == 0 (mod 2).
Numbers k such that A057521(k) is in A028260.
Differs from A096432 by having the additional terms 1 and 216, 256, 768, 864, ... and not having the terms 432, 648, ...
First differs from both A220218 and A335275 at n = 193: a(193) = 216 is not a term of these two sequences.
Cohen (1964) proved that this sequence has an asymptotic density, and gave the value 1/2 + (1/5) * Product_{p prime} (1 + (p^2 + p + 1)/(p^3 * (p + 1))) = 0.8172707179... But the numbers of terms not exceeding 10^k for k = 1, 2, ... are 9, 90, 885, 8849, 88499, 884993, 8849889, 88498711, 884987643, 8849876178, ... indicating that the asymptotic density is about 0.88498...

Examples

			2 is a term since the powerful part of 2 is 1, which has 0 prime divisors, and 0 is even.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], EvenQ @ Total @ Select[FactorInteger[#][[;; , 2]], #1 > 1 &] &]