This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337065 #29 Aug 09 2023 07:06:31 %S A337065 5,12,24,59,97,84,159,128,144,162,186,420,647,457,503,360,1214,1677, %T A337065 532,548,564,600,624,648,1033,1079,752,772,798,828,852,1315,906,924, %U A337065 1924,3096,1667,3496,1208,1230,3834,1993,1360,2101,1446,1472,2251,1530,3977,2471,1668,2569 %N A337065 Infinite sum of the prime numbers, compacted (see the Comments line for an explanation). %C A337065 If the successive terms of the present sequence are expressed as the sum of k>1 consecutive primes in only one way and added, the end result will be 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + ... (conjectured to extend ad infinitum). %C A337065 This is the lexicographically earliest sequence of distinct positive terms with this property. %C A337065 a(n) is the smallest term of A084146 such that the set of prime parts of a(n) has (i) no primes in common with the union of the prime parts of a(1), ..., a(n-1) and (ii) contains the smallest prime excluded in the union of the prime parts of a(1), ..., a(n-1). - _R. J. Mathar_, Aug 19 2020 %H A337065 Jean-Marc Falcoz, <a href="/A337065/b337065.txt">Table of n, a(n) for n = 1..201</a> %e A337065 The 1st term is 5 and 5 = 2+3. %e A337065 The 2nd term is 12 and 12 = 5+7. %e A337065 The 3rd term is 24 and 24 = 11+13. %e A337065 The 4th term is 59 and 59 = 17+19+23. %e A337065 The 5th term is 97 and 97 = 29+31+37. %e A337065 The 6th term is 84 and 84 = 41+43; etc. %e A337065 (The 4th term is NOT a(4) = 36 as 36 is the sum of consecutive primes in more than one way: 36 = 17+19 and 36 = 5+7+11+13). %p A337065 # the set of prime partitions of A084146(n) %p A337065 A084146Pset := proc(n::integer) %p A337065 option remember; %p A337065 local pset,k,i,spr ; %p A337065 pset := {} ; %p A337065 if isA084146(n) then %p A337065 for k from 2 do %p A337065 if add(ithprime(i),i=1..k) > n then %p A337065 break; %p A337065 end if; %p A337065 for i from 1 do %p A337065 spr := add( ithprime(j),j=i..i+k-1) ; %p A337065 if spr > n then %p A337065 break; %p A337065 elif spr = n then %p A337065 return {seq(ithprime(j),j=i..i+k-1)} ; %p A337065 end if; %p A337065 end do: %p A337065 end do: %p A337065 end if; %p A337065 pset ; %p A337065 end proc: %p A337065 A337065 := proc(n) %p A337065 option remember; %p A337065 local pprev,i,pmex,uni, thiss ; %p A337065 # the set of all primes needed to represent all previous terms %p A337065 pprev := {} ; %p A337065 for i from 1 to n-1 do %p A337065 pprev := pprev union A084146Pset(procname(i)) ; %p A337065 end do ; %p A337065 # smallest prime not in the representation of previous terms %p A337065 for i from 1 do %p A337065 if not ithprime(i) in pprev then %p A337065 pmex := ithprime(i) ; %p A337065 break; %p A337065 end if; %p A337065 end do: %p A337065 for uni from 1 do %p A337065 thiss := A084146Pset(uni) ; %p A337065 if pmex in thiss and thiss intersect(pprev) = {} then %p A337065 return uni ; %p A337065 end if; %p A337065 end do: %p A337065 end proc: %p A337065 for n from 1 do %p A337065 print(A337065(n)) ; %p A337065 end do: # _R. J. Mathar_, Aug 19 2020 %Y A337065 Cf. A336897, A050936, A084146. %K A337065 nonn %O A337065 1,1 %A A337065 _Eric Angelini_ and _Jean-Marc Falcoz_, Aug 14 2020