This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337069 #15 Sep 05 2020 03:42:39 %S A337069 1,1,3,34,1591,360144,442349835,3255845551937,156795416820025934, %T A337069 53452979022001011490033,138542156296245533221812350867, %U A337069 2914321438328993304235584538307144802,528454951438415221505169213611461783474874149,873544754831735539240447436467067438924478174290477803 %N A337069 Number of strict factorizations of the superprimorial A006939(n). %C A337069 The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %C A337069 Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n. %F A337069 a(n) = A045778(A006939(n)). %F A337069 a(n) = A318286(A002110(n)). - _Andrew Howroyd_, Sep 01 2020 %e A337069 The a(3) = 34 factorizations: %e A337069 2*3*4*15 2*3*60 2*180 360 %e A337069 2*3*5*12 2*4*45 3*120 %e A337069 2*3*6*10 2*5*36 4*90 %e A337069 2*4*5*9 2*6*30 5*72 %e A337069 3*4*5*6 2*9*20 6*60 %e A337069 2*10*18 8*45 %e A337069 2*12*15 9*40 %e A337069 3*4*30 10*36 %e A337069 3*5*24 12*30 %e A337069 3*6*20 15*24 %e A337069 3*8*15 18*20 %e A337069 3*10*12 %e A337069 4*5*18 %e A337069 4*6*15 %e A337069 4*9*10 %e A337069 5*6*12 %e A337069 5*8*9 %t A337069 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A337069 stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; %t A337069 Table[Length[stfa[chern[n]]],{n,0,3}] %o A337069 (PARI) \\ See A318286 for count. %o A337069 a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ _Andrew Howroyd_, Sep 01 2020 %Y A337069 A022915 counts permutations of the same multiset. %Y A337069 A157612 is the version for factorials instead of superprimorials. %Y A337069 A317829 is the non-strict version. %Y A337069 A337072 is the non-strict version with squarefree factors. %Y A337069 A337073 is the case with squarefree factors. %Y A337069 A000217 counts prime factors (with multiplicity) of superprimorials. %Y A337069 A001055 counts factorizations. %Y A337069 A006939 lists superprimorials or Chernoff numbers. %Y A337069 A045778 counts strict factorizations. %Y A337069 A076954 can be used instead of A006939 (cf. A307895, A325337). %Y A337069 A181818 lists products of superprimorials, with complement A336426. %Y A337069 A322583 counts factorizations into factorials. %Y A337069 Cf. A000142, A000178, A002110, A022559, A027423, A303279, A318286, A322583, A337070, A337071. %K A337069 nonn %O A337069 0,3 %A A337069 _Gus Wiseman_, Aug 15 2020 %E A337069 a(7)-a(13) from _Andrew Howroyd_, Sep 01 2020