This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337070 #12 Sep 02 2020 23:06:29 %S A337070 1,2,16,1208,1383936,32718467072,20166949856488576, %T A337070 391322675415566237681536 %N A337070 Number of strict chains of divisors starting with the superprimorial A006939(n). %C A337070 The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). %F A337070 a(n) = 2*A336941(n) for n > 0. %F A337070 a(n) = A067824(A006939(n)). %e A337070 The a(0) = 1 through a(2) = 16 chains: %e A337070 1 2 12 %e A337070 2/1 12/1 %e A337070 12/2 %e A337070 12/3 %e A337070 12/4 %e A337070 12/6 %e A337070 12/2/1 %e A337070 12/3/1 %e A337070 12/4/1 %e A337070 12/4/2 %e A337070 12/6/1 %e A337070 12/6/2 %e A337070 12/6/3 %e A337070 12/4/2/1 %e A337070 12/6/2/1 %e A337070 12/6/3/1 %t A337070 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A337070 chnsc[n_]:=If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]]; %t A337070 Table[Length[chnsc[chern[n]]],{n,0,3}] %Y A337070 A022915 is the maximal case. %Y A337070 A076954 can be used instead of A006939 (cf. A307895, A325337). %Y A337070 A336571 is the case with distinct prime multiplicities. %Y A337070 A336941 is the case ending with 1. %Y A337070 A337071 is the version for factorials. %Y A337070 A000005 counts divisors. %Y A337070 A000142 counts divisors of superprimorials. %Y A337070 A006939 lists superprimorials or Chernoff numbers. %Y A337070 A067824 counts chains of divisors starting with n. %Y A337070 A074206 counts chains of divisors from n to 1. %Y A337070 A253249 counts chains of divisors. %Y A337070 A317829 counts factorizations of superprimorials. %Y A337070 Cf. A001055, A002033, A167865, A181818, A336420, A336423, A336942, A337074. %K A337070 nonn,more %O A337070 0,2 %A A337070 _Gus Wiseman_, Aug 15 2020