This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337072 #14 Aug 31 2020 19:49:57 %S A337072 1,1,2,10,141,6769,1298995,1148840085,5307091649182, %T A337072 143026276277298216,24801104674619158730662, %U A337072 30190572492693121799801655311,278937095127086600900558327826721594 %N A337072 Number of factorizations of the superprimorial A006939(n) into squarefree numbers > 1. %C A337072 The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1), which has n! divisors. %C A337072 Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of the superprimorial A006939(n). %F A337072 a(n) = A050320(A006939(n)). %F A337072 a(n) = A318360(A002110(n)). - _Andrew Howroyd_, Aug 31 2020 %e A337072 The a(1) = 1 through a(3) = 10 factorizations: %e A337072 2 2*6 2*6*30 %e A337072 2*2*3 6*6*10 %e A337072 2*5*6*6 %e A337072 2*2*3*30 %e A337072 2*2*6*15 %e A337072 2*3*6*10 %e A337072 2*2*3*5*6 %e A337072 2*2*2*3*15 %e A337072 2*2*3*3*10 %e A337072 2*2*2*3*3*5 %e A337072 The a(1) = 1 through a(3) = 10 set multipartitions: %e A337072 {1} {1}{12} {1}{12}{123} %e A337072 {1}{1}{2} {12}{12}{13} %e A337072 {1}{1}{12}{23} %e A337072 {1}{1}{2}{123} %e A337072 {1}{2}{12}{13} %e A337072 {1}{3}{12}{12} %e A337072 {1}{1}{1}{2}{23} %e A337072 {1}{1}{2}{2}{13} %e A337072 {1}{1}{2}{3}{12} %e A337072 {1}{1}{1}{2}{2}{3} %t A337072 chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; %t A337072 facsqf[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsqf[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; %t A337072 Table[Length[facsqf[chern[n]]],{n,0,3}] %o A337072 (PARI) \\ See A318360 for count. %o A337072 a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ _Andrew Howroyd_, Aug 31 2020 %Y A337072 A000142 counts divisors of superprimorials. %Y A337072 A022915 counts permutations of the same multiset. %Y A337072 A103774 is the version for factorials instead of superprimorials. %Y A337072 A337073 is the strict case (strict factorizations into squarefree numbers). %Y A337072 A001055 counts factorizations. %Y A337072 A006939 lists superprimorials or Chernoff numbers. %Y A337072 A045778 counts strict factorizations. %Y A337072 A050320 counts factorizations into squarefree numbers. %Y A337072 A050326 counts strict factorizations into squarefree numbers. %Y A337072 A076954 can be used instead of A006939 (cf. A307895, A325337). %Y A337072 A089259 counts set multipartitions of integer partitions. %Y A337072 A116540 counts normal set multipartitions. %Y A337072 A317829 counts factorizations of superprimorials. %Y A337072 A337069 counts strict factorizations of superprimorials. %Y A337072 Cf. A000178, A002110, A027423, A124010, A181818, A303279, A318360, A336417, A337070. %K A337072 nonn,more %O A337072 0,3 %A A337072 _Gus Wiseman_, Aug 15 2020 %E A337072 a(7)-a(12) from _Andrew Howroyd_, Aug 31 2020