This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337083 #32 Jan 21 2021 07:15:08 %S A337083 1,1,6,101154816, %T A337083 6187732257761496793412385090375984958331031826464768000000000 %N A337083 Number of spanning trees of the 1-skeleton of the (n-1)-dimensional permutohedron. %C A337083 We have the factorizations: %C A337083 a(4) = 2^15 * 3^2 * 7^3. %C A337083 a(5) = 2^59 * 3^15 * 5^9 * 7^5 * 11^6 * 23^5 * 29^4 * 41^4. %C A337083 a(6) = 2^215 * 3^178 * 5^47 * 7^15 * 11^39 * 13^10 * 19^16 * 23^15 * 29^16 * 41^16 * 61^5 * 67^9 * 71^5 * 1931^16 * 3253^9. %H A337083 Richard Stanley, <a href="/A337083/b337083.txt">Table of n, a(n) for n = 1..6</a> %H A337083 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BruhatGraph.html">Bruhat Graph</a> %H A337083 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutohedron">Permutohedron</a> %e A337083 For n=3 the permutohedron is a hexagon, which has six spanning trees. %o A337083 (Python) %o A337083 import sympy,itertools %o A337083 def A337083(n): %o A337083 p=tuple(itertools.permutations(range(n))) %o A337083 m=len(p) %o A337083 q={p[i]:i for i in range(m)} %o A337083 Q=sympy.diag(*[n-1]*m) %o A337083 for i in range(m): %o A337083 for k in range(n-1): %o A337083 Q[i,q[p[i][:k]+tuple(reversed(p[i][k:k+2]))+p[i][k+2:]]]=-1 %o A337083 return Q[:m-1,:m-1].det() # _Pontus von Brömssen_, Jan 18 2021 %Y A337083 Cf. A006237. %K A337083 nonn %O A337083 1,3 %A A337083 _Richard Stanley_, Aug 14 2020 %E A337083 a(1) prepended by _Pontus von Brömssen_, Jan 19 2021