A337089 Number of rooted trees of n vertices in which all leaves are at even depths (distances down from the root).
0, 1, 0, 1, 1, 3, 4, 10, 17, 38, 73, 158, 324, 700, 1483, 3224, 6979, 15300, 33571, 74219, 164476, 366302, 817999, 1833280, 4119266, 9281867, 20962757, 47453359, 107637494, 244630449, 556964670, 1270218355, 2901393727, 6637071449, 15203568955, 34872363374
Offset: 0
Keywords
Examples
For n=5 vertices there are a(5) = 3 rooted trees in which all leaves are at even depths. * * * depth=0, root | / \ | * * * * /|\ | | | * * * * * * depth=2, even | * | * depth=4, even
Links
- Kevin Ryde, Table of n, a(n) for n = 0..600
Programs
-
PARI
\\ Return a vector of vec[n]=a(n) for n=1..len inclusive (so a(0)=0 omitted). a_vector(len) = { my(evens=vector(len), ec=vector(len)); evens[1]=1; my(odds=vector(len), oc=vector(len)); for(n=1,len-1, ec[n] = sumdiv(n,d, d*evens[d]); oc[n] = sumdiv(n,d, d*odds[d]); evens[n+1] = sum(k=1,n, oc[k]*evens[n+1-k]) /n; odds[n+1] = (ec[n] + sum(k=1,n-1, ec[k]* odds[n+1-k])) /n); evens; } \\ or instead "odds" is A337090
Comments