This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337099 #69 Nov 07 2020 22:16:02 %S A337099 1,7,11,71,111,711,1111,7111,11111,71111,111111,711111,1111111, %T A337099 7111111,11111111,71111111,111111111,711111111,1111111111,7111111111, %U A337099 11111111111,71111111111,111111111111,711111111111,1111111111111,7111111111111,11111111111111,71111111111111 %N A337099 Largest positive number using exactly n segments on a calculator display (when '6' and '7' are represented using 6 resp. 3 segments). %C A337099 The sequence begins with a(2) = 1 since at least two segments are needed to form any digit. It requires two segments to form the digit 1 and three segments to form the digit 7. %C A337099 All other digits use more than 3 segments. %H A337099 <a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a> %H A337099 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10). %F A337099 a(n+2) = 10*a(n) + 1 for n >= 2. %F A337099 a(2*n) = (10^n - 1)/9 ; a(2*n + 1) = ((10^n - 1)/9) + 6*10^(n - 1). %F A337099 From _Stefano Spezia_, Sep 29 2020: (Start) %F A337099 G.f.: x^2*(1 + 6*x - 6*x^2)/(1 - x - 10*x^2 + 10*x^3). %F A337099 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4. (End) %t A337099 CoefficientList[Series[(1 + 6*x - 6*x^2)/(1 - x - 10*x^2 + 10*x^3), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Nov 07 2020 *) %Y A337099 Cf. A063720 (number of segments), A216261 (smallest number), A249572. %K A337099 nonn,base %O A337099 2,2 %A A337099 _Suren Suren_, Sep 29 2020 %E A337099 More terms from _Stefano Spezia_, Sep 29 2020