This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337104 #14 May 08 2021 08:30:30 %S A337104 1,1,1,0,14,0,384,0,0,0,21077680,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A337104 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A337104 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A337104 Number of strict chains of divisors from n! to 1 using terms of A130091 (numbers with distinct prime multiplicities). %C A337104 The support appears to be {0, 1, 2, 4, 6, 10}. %F A337104 a(n) = A337075(n) whenever A337075(n) != 0. %F A337104 a(n) = A337074(n)/2 for n > 1. %F A337104 a(n) = A336423(n!). %e A337104 The a(4) = 14 chains: %e A337104 24/1 %e A337104 24/2/1 %e A337104 24/3/1 %e A337104 24/4/1 %e A337104 24/8/1 %e A337104 24/12/1 %e A337104 24/4/2/1 %e A337104 24/8/2/1 %e A337104 24/8/4/1 %e A337104 24/12/2/1 %e A337104 24/12/3/1 %e A337104 24/12/4/1 %e A337104 24/8/4/2/1 %e A337104 24/12/4/2/1 %t A337104 strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[DeleteCases[Divisors[n],n],UnsameQ@@Last/@FactorInteger[#]&]}]]]; %t A337104 Table[strchns[n!],{n,0,8}] %Y A337104 A336867 appears to be the positions of zeros. %Y A337104 A336868 is the characteristic function (image under A057427). %Y A337104 A336942 is the version for superprimorials (n > 1). %Y A337104 A337105 does not require distinct prime multiplicities. %Y A337104 A337074 does not require chains to end with 1. %Y A337104 A337075 is the version for chains not containing n!. %Y A337104 A000005 counts divisors. %Y A337104 A000142 lists factorial numbers. %Y A337104 A001055 counts factorizations. %Y A337104 A027423 counts divisors of factorial numbers. %Y A337104 A067824 counts chains of divisors starting with n. %Y A337104 A074206 counts chains of divisors from n to 1. %Y A337104 A130091 lists numbers with distinct prime multiplicities. %Y A337104 A181796 counts divisors with distinct prime multiplicities. %Y A337104 A253249 counts chains of divisors. %Y A337104 A327498 gives the maximum divisor with distinct prime multiplicities. %Y A337104 A336414 counts divisors of n! with distinct prime multiplicities. %Y A337104 A336423 counts chains using A130091, with maximal case A336569. %Y A337104 A336425 counts divisible pairs of divisors of n!, both in A130091. %Y A337104 A336571 counts chains of divisors 1 < d < n using A130091. %Y A337104 A337071 counts chains of divisors starting with n!. %Y A337104 Cf. A002033, A022559, A071626, A098859, A124010, A167865, A327523, A336424, A336941. %K A337104 nonn %O A337104 0,5 %A A337104 _Gus Wiseman_, Aug 17 2020